

Project Host:

ARUKAY

Vicky Ricaurte

Vicky Ricaurte is the CEO and co-founder of Arukay, an edtech company focused on teaching
coding and computational thinking to K-12 students across Latin America. With a background
in Industrial Engineering, Marketing, and a Master's in Management from Harvard, Vicky has
over 15 years of experience in technology and education. Under her leadership, Arukay has
impacted over 100,000 students across several countries. Vicky's work has been recognized
globally, including being named one of the Top 200 EdTech CEOs worldwide. Her mission is to
bridge the digital divide by providing accessible, high-quality education.

Cristina Duarte

Cristina Duarte holds a Bachelor of Science in Industrial Engineering and a Bachelor’s degree
in Psychology, combining a strong technical foundation with deep insight into human behavior.
She currently serves as Head of Product & Customer Experience at an EdTech company,
where she leads multidisciplinary teams in the development of innovative learning solutions for
K-12 schools across Latin America. Cristina is passionate about educational transformation,
academic research, behavioral economics, and the intersection between people and
technology.

1

Fellows:

Laura Di Giunta, Research Fellow

Natalia Kucirkova, Team Lead, Research Fellow

Patricia Lockwood, Research Fellow

Jazib Zahir, Social Entrepreneur Fellow

2

TABLE OF CONTENTS
Executive Summary 4

Introduction 4
Organisation’s role & strength 4
Need summary 4
Solution summary & next steps 5

Validated Measurement Framework: Arukay aims to refine its assessment methods to
ensure accurate measurement of student progress and digital skill acquisition. This
includes: 5

Deliverable 1: Literature review 7
1. What are the different frameworks of computational thinking? 7
2. Is any framework of computational thinking more reliable/evidence-based than any other
framework? 11

Evidence base for teaching teachers Computational Thinking to use in classrooms 12
Evidence base for the benefits of computational thinking for students 12

Evidence base for assessing computational thinking and how to teach CT 13
3. Does Framework Variability Relate to Different Countries, Different Scopes or Different
Age Groups? 17

Deliverable 2: Evaluation of the Arukay assessment tool and its psychometric properties
21

Process 21
Results 24

Difficulty index for baseline assessments 24
Combined ratings for different constructs assessed by the fellows. 25
Combined ratings for individual items 26
Baseline 3 to 5 26
Baseline 6 to 8 27
Baseline 9 to 10 28

Recommendations to Arukay 28
Deliverable 3: Recommendations for Arukay to validate the revised the baseline
assessment tool 31

Next steps for Arukay to validate the baseline assessment 31
Recommendations for Validating the Arukay Assessment Tool 33

Deliverable 4: Linking Arukay’s Mission with Global Partners 37
Participation in Robotics competitions 39
Bebras Computational Thinking Challenge 40

Summary 41
References 46

3

Executive Summary

Introduction

Arukay is an EdTech company dedicated to equipping students in Latin America with essential
digital skills, computational thinking, and coding expertise to prepare them for the demands of
a technology-driven world. By integrating digital literacy into K-12 education, Arukay aims to
break cycles of poverty and create opportunities for future generations. For over a decade,
Arukay, as a growing organization has impacted over 100,000 students across multiple Latin
American countries, Arukay seeks to strengthen the evidence base of its educational model
through a LEAP Project with MIT Solve.

Organisation’s role & strength

Arukay operates as a for-profit EdTech company with a mission to transform education by
making digital literacy accessible to students, regardless of socioeconomic background. The
organization is led by CEO and co-founder Vicky Ricaurte, whose expertise in management
and educational technology positions the company as a leader in the field. The team includes
specialists in curriculum development, platform engineering, finance, and commercial outreach,
ensuring cross-functional collaboration and strong implementation capabilities. Arukay’s
success is driven by its structured and dynamic instructional design, robust teacher training
programs, and advanced data analytics for learning assessment.

Need summary

Latin America faces a critical digital skills gap, with only 17% of students advancing to higher
education and a slow intergenerational economic progression. The lack of systematic, early
digital education exacerbates social inequalities and limits economic mobility. Arukay seeks to
address this challenge by integrating coding and computational thinking into primary and
secondary education. However, to maximize impact, the organization requires a stronger
evidence base to validate its effectiveness, refine assessment methodologies, and develop
scalable measurement frameworks.

4

Solution summary & next steps

● High-Quality Curriculum: Age-appropriate, multilingual digital literacy courses.
● Teacher Training & Support: Equipping educators with the necessary tools to integrate

computational thinking into their classrooms.
● Advanced Reporting & Analytics: Providing real-time insights into student progress.

The next steps include leveraging the LEAP Project to:

1. Improve the design of formative and summative assessments.
2. Enhance data collection methodologies for measuring soft and hard skill acquisition.
3. Develop a long-term framework to track computational thinking skills across primary

and elementary education.

Deliverable 1

Validated Measurement Framework: Arukay aims to refine its assessment methods to ensure
accurate measurement of student progress and digital skill acquisition. This includes:

● Establishing a structured methodology for measuring learning outcomes.
● Aligning assessment tools with international standards such as ISTE and CSTA.
● Ensuring that measurement strategies provide meaningful insights for educators and

stakeholders.

Deliverable 2

Improved Data Collection & Analysis Methodologies: The LEAP Project will support the
development of a research-backed approach to data gathering and analysis, leading to:

● Enhanced data accuracy and reliability through systematic collection techniques.
● More effective teacher engagement in data-driven instructional decisions.
● A scalable model for tracking computational thinking skill development over time.

Deliverable 3

Redesign of a Revised Computational Thinking Measurement Tool: Arukay will redesign a
revised version of a vehicle to measure the acquisition of computational thinking skills across
primary and elementary school years. This includes:

● Defining key performance indicators to track long-term student progress.

5

● Developing an adaptive measurement system to ensure accurate skill assessment over
time.

● Creating a structured framework to integrate the tool within existing educational
programs.

 Deliverable 4

Linking Arukay’s Mission with Global Partners: The LEAP team will identify partnerships that
make sense for Arukay as it looks to grow its global footprint:

● Sharing the computational thinking framework followed by the Raspberry Pi Foundation
as a reference

● Identifying partnership models that may align Arukay with the Raspberry Pi Foundation
● Reviewing academic literature on the significance of computational thinking in preparing

students for robotics competitions as part of making Arukay think about its significance
to schooling

6

Deliverable 1: Literature review

As a first step, we identified, in collaboration with Arukay, three key outstanding questions in
the field of computational thinking. Fellows then reviewed the literature to provide an evidence
base to answer these outstanding questions before evaluating the assessment tools currently
used.

1. What are the different frameworks of computational thinking?

Computational thinking

Computational thinking is a structured and systematic approach to problem-solving that
enables individuals to break down complex problems, recognize patterns, focus on relevant
information, and develop algorithmic solutions. It is a fundamental skill that extends beyond
computer science, integrating into various academic disciplines and real-world applications
(Digital Promise, n.d.). Before a problem can be effectively addressed, it must first be
thoroughly understood, including the potential methods by which it can be resolved.
Computational thinking provides a framework to achieve this understanding and formulate
solutions that can be executed by humans, computers, or both.

7

Figure 1: Image from BBC Bitesize, What is computational thinking? Available from:
https://www.bbc.co.uk/bitesize/guides/zp92mp3/revision/1

The Four Cornerstones of Computational Thinking

Computational thinking is underpinned by four essential techniques, often referred to as its
cornerstones: decomposition, pattern recognition, abstraction, and algorithms. Each of these
components plays a vital role in structuring and solving problems efficiently.

● Decomposition involves breaking down a complex problem or system into smaller,
more manageable parts. This process makes intricate challenges more approachable by
dividing them into simpler sub-problems, each of which can be analyzed and resolved
individually before integrating the solutions into a cohesive whole.

● Pattern Recognition is the practice of identifying similarities and trends within
problems. By recognizing recurring themes or structures, individuals can apply previous
solutions to new problems, thereby increasing efficiency and reducing redundant effort.

8

https://www.bbc.co.uk/bitesize/guides/zp92mp3/revision/1

● Abstraction focuses on isolating the most critical information while disregarding
irrelevant details. This technique ensures that problem solvers concentrate on essential
elements, making the process of finding a solution more streamlined and effective.

● Algorithms involve formulating a step-by-step procedure or set of rules to solve a
problem. These procedures can be expressed in a manner that is comprehensible to
both humans and computers, ensuring clear and repeatable execution.

Each of these techniques is equally important, functioning as interconnected skills that
collectively enhance the ability to solve problems systematically. The absence of any one
component weakens the overall problem-solving process, much like a table missing a leg.
When applied correctly, these techniques are particularly beneficial in programming, as they
help structure logical and efficient code.

The Broader Scope of Computational Thinking

Computational thinking extends beyond the realm of computer science. It is an interrelated set
of skills and practices that facilitate the resolution of complex problems across various
disciplines, including mathematics, science, social studies, and the arts. While computing
encompasses both computer science and computational thinking, the latter serves as a
cross-disciplinary approach to problem-solving. Unlike programming, which involves writing
and debugging code to be executed by a computer, computational thinking focuses on the
conceptual strategies that underpin effective problem-solving in diverse contexts.

For educators seeking to integrate computational thinking into their classrooms, it is best
understood as a continuum of interrelated skills and competencies rather than a singular,
isolated ability. By fostering these skills in students, educators can prepare them not only for
careers in technology but also for a world increasingly driven by computational processes.
Computational thinking is, therefore, not just a technical skill but a fundamental cognitive
approach that enhances critical thinking and problem-solving capabilities across multiple
domains.

The following rapid evidence review examines key CT frameworks, highlighting their key
components and key contributions to the field.

Early Foundations: Seymour Papert’s Model (1980)

Seymour Papert was a pioneer in computational thinking, introducing the concept through the
LOGO programming language. Papert’s work emphasized the role of computers in fostering
exploratory learning, particularly in mathematics and artistic expression (Papert, 1980). By
engaging children in programming, Papert aimed to cultivate higher-order thinking skills,
reinforcing logical reasoning and problem-solving abilities. His model laid the foundation for
integrating coding as an essential pedagogical tool, influencing subsequent CT frameworks.

9

Jeannette Wing’s Computational Thinking Framework (2006)

Jeannette Wing (2006) significantly advanced the discourse on CT by formalizing it as a
universal skill applicable beyond computer science. Wing conceptualized CT as involving
problem-solving, system design, and an understanding of human behavior. Her seminal work
argued that CT should be a fundamental competency akin to literacy and numeracy, prompting
a global movement to integrate CT into K-12 education (Wing, 2006). This framework
underscored the interdisciplinary relevance of CT, advocating for its inclusion in diverse
curricula.

Brennan and Resnick’s Three-Dimensional Framework (2012)

Brennan and Resnick (2012) expanded upon existing CT models by introducing a
three-dimensional framework encompassing concepts, practices, and perspectives. The
concepts dimension includes fundamental programming constructs such as loops,
conditionals, and sequences.They are the concepts that users need to master to understand
the mechanics of programming, including sequences, loops, parallelism, events, conditionals,
operators, and data. The practice dimension includes strategies that learners apply while
solving problems, including during programming, expressing, connecting, and questioning
concepts. The dimension draws on four main strategies: being incremental and iterative, testing
and debugging, reusing and remixing, and abstracting and modularizing. The perspectives
dimension accounts for the socio-emotional aspects of CT, such as collaboration and
self-awareness.

This model provides a structured methodology for assessing and developing CT skills in
educational contexts.

Tikva and Tambouris’s Five-Area Model (2021)

Tikva and Tambouris (2021) introduced a comprehensive framework for CT that categorizes its
components into five interconnected areas: knowledge base, learning strategies, tools,
assessment, and capacity building. This model offers a structured approach to integrating CT
into K-12 education, emphasizing both theoretical knowledge and practical application. By
incorporating assessment methods, the framework ensures that CT skills are systematically
developed and evaluated.

Zapata-Cáceres’s Beginners Computational Thinking Test (2020)

Zapata-Cáceres et al. (2020) designed the Beginners Computational Thinking Test (BCTt) to
assess students' proficiency in CT concepts across different educational stages. The test
evaluates fundamental computational constructs, including sequences, simple loops, nested

10

loops, and conditionals. While the BCTt provides a structured approach to measuring CT skills,
it does not integrate socio-emotional components, leaving room for future research on the
interplay between computational skills and broader cognitive abilities.

In sum, from Papert’s pioneering work in exploratory programming to Wing’s conceptualization
of CT as a universal literacy, each model provides unique insights into the development and
assessment of computational skills. Future research should focus on integrating
socio-emotional aspects with core computational skills to create a holistic CT framework that
supports both cognitive and collaborative learning.

2. Is any framework of computational thinking more
reliable/evidence-based than any other framework?

As reviewed in the previous section, many different definitions of computational thinking (CT)
exist. Some definitions have been inspired by the culture and the technicalities of professional
computer science, whereas others have been developed by educators and researchers. These
issues surrounding definition have made it hard to assess whether there is a suitable evidence
base supporting the teaching of CT to students. Similarly, the ongoing discussion and
confusion surrounding the definition of CT have led to varied interpretations and
operationalization in implementing CT in teachers' professional learning. If we converge on a
general definition as the ability to analyze and solve various problems based on cognitive
competencies and dispositions (Wing, 2010) we can next ask whether there is an evidence
base that supports specific components being essential to these factors. However, it is too
early to answer whether one framework has a stronger evidence base than any other
framework.

11

Evidence base for teaching teachers Computational Thinking to use in classrooms

The evidence base is rapidly expanding given the sharp increase in the impact of information
technologies in our lives. However, rigorous research studies are still in their infancy. One of
the best types of evidence comes in the form of systematic reviews that can take a ‘gold
standard’ empirical approach to surveying the literature and drawing conclusions. Liu et al.,
(2024) conducted a systematic review on supporting teachers in integrating computational
thinking into K-12 classrooms. They surveyed the literature with key terms including the topic
word “computational thinking”, a set of synonyms for professional development (i.e.,
“professional development”, “teacher development”, “training”, “intervention”, and “workshop”)
and a set of synonyms for the potential outcomes of professional development (i.e., “teacher
thinking”, “teacher perception”, and “teacher knowledge”). They concluded that future research
should investigate what constitutes “good CT instruction” and how it can be effectively
measured. This includes developing robust assessment tools that can capture teachers’
professional growth longitudinally and its impact on student performance.

Figure 2. Schematic showing operationalisation of computational thinking in light of how it
impacts professional development.

Those with a stronger emphasis on computing tool usage on the right side of the spectrum
while the operationalizations with a heavier emphasis on thinking abilities on the left side of the
spectrum. None are more valuable than another, but they are useful for contextualising the
complex landscape of computational thinking for professional development for teachers. From
Liu et al., (2024).

Evidence base for the benefits of computational thinking for students

12

Despite widespread agreement that teaching CT is beneficial for students, there remain very
few empirical studies with rigorous research methods supporting a benefit. The National
Research Council (United States) concluded that teaching programming improves
interpersonal, self-regulatory, and metacognitive thinking skills (NRC, 2010). However, another
study found a negative relationship between cooperativity and academic performance, and no
association with algorithmic thinking, critical thinking, creativity, and problem-solving (Doleck et
al., 2017). There is some evidence that teaching CT improves performance on a computer
science course (Gouws et al., 2013). As mentioned, one of the best types of evidence at the
early stage of developing an evidence base are systematic reviews. A systematic review of
K-12 CT research found that teaching coding influenced a range of educational outcomes,
including problem-solving, critical thinking, social skills, self-regulation, and other academic
skills, such as reading and spelling (Popat & Starkey, 2019).

Evidence base for assessing computational thinking and how to teach CT

Another important question is whether there is an evidence base for how to assess
computational thinking and how to teach it, and whether particular methods are more reliable
than others. Vihavainen et al. (2014) found that teaching interventions focused on CT can
improve programming pass rates by nearly one-third when compared to a traditional lecture
and lab-based approach. These included peer-led team learning, pair-programming,
peer-teaching as well as designing relatable content adapted to student interests and needs,
including effective media design, real-world projects, and gamification.

Self-report measures, where students are asked questions about how much they have
developed CT skills, have also begun to be developed. The Computational Thinking Scale is a
29-item instrument composed of five factors, namely creativity, cooperativity, algorithmic
thinking, critical thinking, and problem-solving (Korkmaz et al., 2017). They suggested that the
psychometric properties of the scale were good, and the measures have been cited over 700
times. However, this scale was developed to assess CT skills in undergraduate degree students
and is likely not suitable for younger students. Another scale, also called The Computational
Thinking Scale (Tsai et al., 2020), but developed for young people ages 13 to 15, focused on 5
core CT components (abstraction, decomposition, algorithmic thinking, evaluation and
generalization). They found good validity and reliability for the assessment. The items are
shown below.

13

https://www.sciencedirect.com/topics/psychology/systematic-review
https://www.sciencedirect.com/topics/social-sciences/gamification

Figure 3. The computational thinking scale. A validated measure for young people aged 13-15
(Tsai et al., 2020).

Another measure with programming items, The computational thinking assessment scale (Shen
et al., 2024), is used to assess children ages 8-11. It consists of 10 items, 9 multiple-choice
questions and 1 open-ended question. The questions focus on students' ability to think
algorithmically and apply computational processes in different contexts. In a study of 222
children, they found the CTAS to be a strong tool for assessing computational thinking. In a
systematic review of measures assessing computational thinking (Ocampo et al., 2024)
concluded that:

14

https://drive.google.com/file/d/1osybI86RNhZTGWEjiojDeH8OtsOXc6pt/view

- Validity is the most reported psychometric property in CT measurement
- Abstraction is the most evaluated skill in computational thinking measurement

instruments.
- In Latin America, there is an absence of instruments for measuring CT
- Türkiye, USA, and China lead the publication of articles that evaluate CT

15

Figure 4. Overview of computational thinking assessment tools developed since 2023.
Adapted from Ocampo et al., (2024).

In summary, when assessing an evidence base, there are several important factors to consider.
Is there evidence for how best to inform teachers of CT for their professional development?
Second, does teaching CT improve students' academic performance and abilities and does
this generalize to other areas of learning? Finally, how can we best assess CT empirically to
improve the evidence base of the first two questions?

16

3. Does Framework Variability Relate to Different Countries, Different
Scopes or Different Age Groups?

Variability in Computational Thinking Frameworks Across Countries and Cultures

Computational Thinking (CT) frameworks are influenced by many factors, such as the
educational goals of each country, cultural values, and available resources. As CT is integrated
into school curriculums in different countries, it is important to understand how age-related
development affects how these frameworks are taught. Key factors include cognitive
development (how children think and learn) and socio-emotional development (how they
manage emotions and interact with others). These factors change as students grow older.

For example, in countries like the United States, large initiatives like Computer Science for All
focus on teaching coding and algorithms (Grover & Pea, 2013). However, in countries with less
access to technology, CT might focus more on problem-solving and teamwork (Ocampo et al.,
2024). This shows how frameworks must adjust depending on each country’s culture,
economy, and technology. Additionally, these frameworks should take into account the
age-related development of students, including their emotional and social needs.

Differences in Scope of Frameworks Across Disciplines and Educational Contexts

The scope of CT frameworks differs across subjects, school levels, and even age groups.
Children’s ability to understand complex concepts changes as they get older. For example,
younger children may need frameworks that focus more on basic skills, while older students
can handle more advanced topics. As children develop cognitively, their ability to think more
abstractly grows. For instance, when students are younger, they might focus on concrete tasks
like solving puzzles, but by adolescence, they can work on more abstract concepts like
designing computer programs, a pattern that aligns with Piaget’s original theory (1952),
although it is not universally accepted (Lourenco & Machado, 1996).

Additionally, emotional development, such as learning how to control one’s emotions (called
emotional regulation) and understanding how to work well with others (called prosocial
behavior), also influences how they engage with learning. Emotional regulation refers to the
ability to manage and control one's emotional responses, while prosocial behavior includes
actions that benefit others, such as helping or sharing. As students grow, they become more
able to manage emotions and engage in collaborative work, which can improve how they learn
computational thinking (Eisenberg, Spinrad, Knafo-Noam, 2015).

Age Group Variability in the Application of CT Frameworks

Middle Childhood (Ages 6-11)
During middle childhood, children develop the ability to think logically about tangible objects

17

and relationships, but they may struggle with abstract reasoning (Piaget, 1952). At this age, CT
frameworks often use hands-on tools like Scratch, a visual programming language. These tools
allow children to manipulate images and objects on the screen to learn concepts like loops and
sequences without needing to understand complex programming syntax (Resnick et al., 2009).
This hands-on approach helps children break down problems into simpler parts, which is a key
skill in computational thinking.

In terms of socio-emotional development, children at this age start to develop better social
skills, such as working together with peers. Erikson (1963) calls this stage the development of
competence through interactions with others. CT frameworks can take advantage of this by
encouraging group-based activities. Group learning helps children develop skills such as
communication, empathy, and teamwork. Emotional regulation also plays a role here, as
children at this age start to learn how to manage their emotions in social situations, which can
improve collaboration (Eisenberg et al., 2015).

Preadolescence (Ages 12-14)
In preadolescence, children begin to think more abstractly and deal with hypothetical situations
(Piaget, 1952). As their cognitive skills advance, CT frameworks for this age group often involve
more complex tasks, such as designing algorithms (step-by-step instructions for solving
problems) or using programming languages like Python or JavaScript.

At the same time, preadolescents are exploring their identities and becoming more
independent, which Erikson (1963) sees as crucial for developing self-confidence. During this
stage, it is important for CT frameworks to offer opportunities for personal projects that allow
preadolescents to explore topics they care about. Peer feedback is also very important in this
stage, as adolescents tend to rely more on their friends and social groups for validation.
Collaborative, peer-based learning can engage preadolescents more effectively (Doleck et al.,
2017). This is where prosocial behavior—working well with others—is a key part of learning and
collaboration.

Adolescence (Ages 15-18)
Adolescents are capable of advanced abstract thinking, which allows them to engage with
more sophisticated computational topics, such as data structures, algorithms, and software
engineering (Piaget, 1952). At this stage, CT frameworks focus on preparing students for
careers by offering real-world applications like app development or data science projects.
These projects challenge students to think critically and solve complex problems.

The emotional and social changes adolescents experience are important to consider in CT
frameworks. As Erikson (1963) notes, adolescence is a time for exploring one’s identity and
deepening social relationships. Adolescents care about how they relate to their peers, and their
ability to manage emotions is crucial for success in group projects. This is where emotional
regulation becomes important in CT frameworks. Working on larger projects with others helps

18

students develop both technical skills and social-emotional skills like collaboration and conflict
resolution (Grover & Pea, 2013).

Cultural and Educational Influences on Framework Design

The culture of a country plays a significant role in how CT frameworks are designed. In
countries with collectivist cultures (like many East Asian countries), there is a focus on group
work and cooperation. This fits well with the social-emotional development of children in these
cultures, who may be more accustomed to working together to achieve shared goals (Doleck et
al., 2017). On the other hand, in individualistic cultures (like many Western countries), there may
be more focus on independent problem-solving and self-regulation.

The availability of technology also affects how CT is taught. In countries with limited access to
technology, the focus may be more on cognitive skills, such as creative problem-solving, rather
than on coding and programming. This ensures that all students, regardless of access to
technology, can still benefit from learning the core ideas of computational thinking.

Studies from Nordic Countries
In countries like Finland, Sweden, and Denmark, CT education is integrated into various
subjects, not just computer science. These countries emphasize creativity, problem-solving,
and collaboration, which aligns with the developmental stages of students. For example,
Finland’s curriculum incorporates computational thinking into subjects like math, science, and
the arts, showing how CT can apply to real-world challenges (Kikas et al., 2020). Additionally,
Bocconi, Chioccariello, and Earp (2018) highlight the Nordic approach to integrating
computational thinking and programming into compulsory education, where the focus is on
fostering creativity and problem-solving skills, as well as ensuring that all students can access
this type of learning regardless of their socio-economic background.

Studies from North America
In North American countries like the United States, CT is seen as essential for preparing
students for a tech-driven future. Initiatives like Computer Science for All focus on providing
coding and computational skills to a wide range of students (Grover & Pea, 2013). Similarly,
Canada and other North American countries are heavily investing in STEM (Science,
Technology, Engineering, and Mathematics) education to equip students with the cognitive and
technical skills needed for future careers (Grover & Pea, 2013).

Studies from Latino Countries
In Latino countries, there is an increasing recognition of the importance of CT for
socio-economic development. In Brazil, the government has launched initiatives to teach
coding and problem-solving to students from elementary to high school, helping them compete
in a global economy (Bocconi et al., 2018). Similar initiatives are underway in Mexico and

19

Argentina, where schools are focusing on improving digital literacy to enhance both cognitive
and socio-emotional skills (Bocconi et al., 2018).

Summary for this section

The variability in Computational Thinking (CT) frameworks across different countries,
educational levels, and age groups highlights the need for context-sensitive models that can be
tailored to the local educational, cultural, and technological environment. While the core
principles of CT, such as decomposition, abstraction, and algorithmic thinking, remain
universal, their application and assessment must be adapted to meet the needs of students in
diverse settings.

Frameworks in K-12 education are often designed to be flexible and accessible, focusing less
on formal programming languages and more on the broader cognitive aspects of CT, such as
problem decomposition and pattern recognition. These frameworks also tend to prioritize
collaborative problem-solving and hands-on learning, as these approaches have been shown
to enhance student engagement and facilitate deeper understanding (Grover & Pea, 2013). For
instance, platforms like Scratch (Resnick et al., 2009) are commonly used in elementary and
middle schools to introduce coding concepts through interactive and creative projects.

In contrast, higher education frameworks tend to be more specialized and focused on
the technical development of specific computational skills. These frameworks are often
built around formal programming languages, algorithm design, and data structures to
prepare students for professional careers in computer science and related fields
(Korkmaz et al., 2017). In university settings, CT frameworks are more structured, offering
deep dives into technical topics, whereas K-12 frameworks focus more on providing
students with a broad foundation in computational thinking that can be applied across
disciplines.

Future research should explore how these frameworks can be adjusted to ensure that all
learners, regardless of their background or access to technology, have the opportunity to
develop the critical thinking and problem-solving skills needed in the 21st century.

20

Deliverable 2: Evaluation of the
Arukay assessment tool and its

psychometric properties

Process

Goal
The primary goal of this evaluation was to assess the content validity of the Arukay
Assessment System by gathering external expert feedback. This system was reviewed
by a team of independent evaluators (i.e., the fellows) to ensure that its items were
clear, culturally relevant, and effective in assessing key skills. The evaluators provided
feedback on specific aspects such as clarity, cultural appropriateness, and the ability
to assess problem-solving skills.

Profile of the Independent Evaluators
The evaluation was carried out by three independent experts, each bringing unique
expertise to the project, ensuring a diverse range of perspectives:

● Evaluator 1: Patricia Lockwood is a Professor of Decision Neuroscience and
Wellcome Sir Henry Dale Research Fellow at the University of Birmingham, UK.
Her research focuses on learning, decision-making and social cognition across
the lifespan from childhood to old age. She regularly uses computational models
of behaviour in her research work. Her skills helped her to ensure the
psychometric properties of the Arukay Baseline Assessments, and in ensuring
the language and structure was tailored to the abilities of different age groups.

● Evaluator 2: Natalia I. Kucirkova is a research professor affiliated with the
University of Stavanger, Norway and The Open University and University College
London, UK. Natalia’s research takes place collaboratively across academia,
commercial and third sectors. She co-founded and currently directs the
International Centre for EdTech Impact that connects EdTech academia and
industry. Natalia is widely published on topics of EdTech evidence in leading
journals including Nature and NPJ of Learning. Natalia’s expertise supported the

21

Arukay’s Baseline Assessment in terms of its equity and inclusive design
properties and alignment with the Science of Learning.

● Evaluator 3: Laura Di Giunta is a Professor of Personality Development
Psychology at Sapienza University of Rome, Italy. Her specialization in children
and adolescent socio-emotional development, alongside her expertise in
quantitative psychology and factorial validity, allowed her to evaluate the
content validity of the Arukay Assessment System. Her skills were helpful in
ensuring the system aligned with developmental and socio-emotional concepts
for children and adolescents.

It is important to note that no evaluators were native Spanish speakers, and the Arukay
system was originally created in Spanish. Therefore, the evaluators reviewed the
system’s content based on its translated version. While their expertise ensured a focus
on clarity and cultural relevance, they were not positioned to assess the system’s
overall effectiveness in its original language.

Evaluation Focus Areas
 The evaluators provided feedback on the following key areas:

● Clarity of Instructions: How easy is it for children in different age groups to
understand and follow the instructions for each task?

● Cultural and Contextual Relevance: How well do the items reflect the diverse
cultural backgrounds of children, ensuring fairness and avoiding bias?

● Decomposition: How well do the items help children break down complex
problems into smaller, manageable parts?

● Abstraction: How well do the items help children focus on relevant details and
ignore irrelevant ones?

● Patterns: How well do the items encourage children to recognize patterns or
trends?

● Algorithm: How well do the items help children understand and create
step-by-step procedures to solve problems?

22

● General Improvements: Any suggestions for improving the wording or clarity of
the items.

Types of Investigations
 To achieve a comprehensive evaluation, two distinct types of investigations were
conducted:

1. Quantitative Data Analysis from Students
The fellows analyzed previously collected data from students of different ages
who had completed the baseline assessment using the Arukay system. This
data was analyzed quantitatively to provide insights into the system's
performance in assessing key skills. While the fellows were not directly
evaluating the validity of the system, their analysis contributed to the ongoing
process of establishing the system's validity by offering valuable feedback on
how well the system functioned in real-world conditions.

2. Fellows’ Rating of the Existing Measure
The fellows also rated the items based on various attributes, such as clarity,
cultural relevance, and alignment with the problem-solving skills being
assessed. This allowed the fellows to provide direct feedback on the system’s
content from their professional perspectives. The results from the fellows’
ratings were then used to further inform the evaluation process, ensuring a
comprehensive review of the system’s strengths and potential areas for
improvement.

Evaluator Scoring and Analysis
Each fellow scored the items on a scale of 1 (not much) to 3 (very much) based on how
well the items met the evaluation criteria. Items were assessed for three distinct age
groups: 3rd–5th graders, 6th–8th graders, and 9th–11th graders. The scores were then
aggregated to provide insights into the content validity of the translated materials.

The results from both the evaluators' feedback and the quantitative data analysis
offered a comprehensive understanding of how well the Arukay Assessment System
aligns with its intended goals. Based on the findings, the fellows proposed
recommendations for improving the system, helping to guide the next steps in
validating its effectiveness.

23

Results

Quantitative feedback based on existing baseline assessment data

The fellows recorded the items provided by Arukay for the existing baseline
assessments. Accuracy in responses for each of the items was calculated (0 or 1
depending on if the answer was correct or incorrect). After reviewing the composition
of the questionnaire, it was determined that the clearest measure that could be
psychometrically assessed was ‘difficulty index (also known as the p-value)’ which is a
measure of how easy or difficult a question is, based on the percentage of students
who could answer it correctly. This is a quantitative measure that can be calculated
from existing baseline data provided by Arukay, and is different from the 3 independent
ratings provided by raters on ‘clarity’ of the wording of the different items.

We provide the results of this difficulty index analysis below for the 3 baseline
assessments we had access to, which contained responses for 3 questions each per
domain of computational thinking (Decomposition, Patterns, Abstraction, Algorithmic
thinking). We also provide a guideline for the range of values for each item to be
classified as easy, average or difficult. Items should ideally be revised if they fall into
the easy or difficult range (Bermundo, C., Bermundo, A. & Ballester, R., 2004; Sahoo,
D. P., & Singh, R., 2017).

Difficulty index for baseline assessments

Please find below the results of the difficulty index analysis for each of the 3 age group baseline
assessments.

24

Quantitative feedback based on Fellow ratings

Please find below the statistical results from the fellow ratings assessment of the baseline
measures. Summary statistics are provided as well as graphs depicting the average fellows
scores for each of the 20 items in each baseline assessment.

Combined ratings for different constructs assessed by the fellows.

Combined ratings for individual items

Baseline 3 to 5

25

26

Baseline 6 to 8

27

Baseline 9 to 11

28

Recommendations to Arukay

General feedback from the Research Fellows

● To improve the quiz, consider breaking up multi-part questions into separate sentences
to enhance clarity.

● Consistency in phrasing is also important—ensure that questions of the same type are
worded exactly the same way to avoid confusion, such as standardizing "What figure
comes next in the sequence?" rather than using variations like "Which figure continues
in the sequence?"

● Keep question labels simple by just numbering them (e.g., "Question 1") instead of
adding unnecessary descriptors like "Question 1: Problem/requirement," as
straightforward instructions are most effective.

● To improve clarity and accessibility, avoid sub-questions and lengthy, multi-part
questions. Instead, break them into simpler, more direct statements using full stops. For
example, the question:

"They ask you to make a work of art that contains only warm colors. Apart from that, the
theme must be about any existing mammal. That is, you must draw a mammal with warm
colors. You can use whatever art technique you prefer. Taking this requirement into account,
how would you propose the breakdown of ordered steps to create the work of art?"

Could be rewritten as:

"Please draw a mammal using only warm colors. Select from the options below the steps
you would need to complete the task."

This ensures the instructions are clear and easy to follow.

● Consider accessibility—does the use of colours accommodate colour-blind or visually
impaired students? Universal Design principles suggest that colour should not be the
sole means of conveying information. To make the quiz more inclusive, consider using
high-contrast colour schemes that are distinguishable for individuals with colour
blindness, such as blue and orange instead of red and green.

● For students with low vision, ensure that text is displayed in a clear, legible font with
sufficient contrast against the background. Providing the option to enlarge text or
switch to a high-contrast mode could further enhance accessibility. Moreover,
screen-reader compatibility should be taken into account by structuring the quiz with
alternative text for images and ensuring that interactive elements, such as
drag-and-drop tasks, are navigable via keyboard controls.

29

● If possible, consider offering an auditory component where questions and answer
choices can be read aloud. This would benefit not only visually impaired students but
also those with reading difficulties or learning disabilities such as dyslexia. Ensuring
accessibility from the outset will make the quiz more inclusive, allowing all students,
regardless of their abilities, to engage with and benefit from the learning experience.

● True/false questions should always be formatted as clear questions with question
marks. These question types may also encourage guessing rather than demonstrating
knowledge, so consider using multiple-choice questions with three to four response
options instead. Maintaining a consistent question format throughout the quiz will help
students focus on the content rather than navigating different question structures.

● Overall, the images predominantly feature male figures, leading to an imbalance in the
representation of female figures. To improve this measure, it would be beneficial to
achieve a more balanced depiction of both genders in the visuals. Additionally, please
refer to the notes in column C regarding certain items that may be relevant in some
cultures (e.g., where a Christmas tree is recognized and holds significance), or during
specific times (e.g., the Covid-19 pandemic), but not in others.

 Specific feedback on Base 3-5 questions:

For Question 10, the answer is unclear—the instructions state that the number of lines must
equal the number of spheres, yet this is not accurately reflected in the given diagram. It would
be helpful to clarify this to avoid misunderstandings.

In Item #15, removing the 'Ñ' character might be beneficial, as it could introduce cultural
specificity that is not relevant to the task's abstract nature. Lastly, the instructions for Item #16
are somewhat difficult to follow. To improve clarity, consider including an image demonstrating
the completed task, similar to the original Tower of Hanoi, to provide students with a clear
visual reference. These refinements will help ensure the quiz is more accessible, fair, and easy
to understand for all students.

Specific feedback on Base 6-8 questions:

For items 1-7, the answers are all just pick the option that has the most steps, so they may not
evaluate actual understanding too well.

Some of the items for patterns could be developed more from other assessment measures of
patterns in this age group, as the items can be quite similar to the other categories and directly
use the word 'patterns' rather than getting at pattern knowledge implicitly.

The way the questions map on to the four domains of CT is a bit clearer in baseline 3_5, could
slightly more complex less text-based question be incorporated for this age group too?

Specific feedback for Base 9-11 questions:

30

Some of the items would be influenced quite strongly by cultural background, with examples
talking about specific grades of 4.5 and 5, which are not universally applied across cultures.

After checking the Spanish and English versions, there might be a typo in item #15 (i.e., both
items ask "what are the key points of these problems?"). Could this be an error from copying
and pasting, or is it intentional?

31

Deliverable 3: Recommendations for
Arukay to validate the revised the

baseline assessment tool
Next steps for Arukay to validate the baseline assessment
Fellows recommend including a self-report measure of computational thinking for all age
groups in the revised baseline assessment measure. This self-report measure will help evaluate
students' perceptions of their own computational thinking abilities, and how these correlate
with performance on the baseline assessment. The self-report scale can also be used before
and after taking part in the Arukay programme to assess baseline computational thinking skills
and how they change.

We recommend including The Computational Thinking Scale, shown below, which measures
self-reported computational thinking skills in 5 domains (Tsai et al., 2020).

32

Once the measure is revised according to the recommendations, fellows then recommend
testing the revised measure in a new sample of students in the different age groups. We
summarise the three stages of baseline assessment development to guide Arukay with how to
implement these revisions and evaluate their effect on measurement validity.

33

Recommendations for Validating the Arukay Assessment Tool

Following the revision of the Arukay assessment tool, the next phase should be to rigorously
validate the measure to ensure it reliably assesses the intended skills across age groups. This
process involves gathering different types of validity evidence and conducting pilot testing. The
steps outlined below are aligned with best practices in educational and psychological
measurement (AERA, APA, & NCME, 2014) and should be implemented by a team with
expertise in quantitative research methods and psychometrics.

Evidence of measurement validity

Construct Validity: To help assess whether the Arukay assessment measures the intended
underlying competencies (e.g., algorithmic thinking), it is helpful to examine construct validity.
This form of validity refers to the degree to which test scores reflect the theoretical construct(s)
they are intended to measure (Brown, 2015).

A common method for assessing construct validity is factor analysis. Arukay's tool, which
comprises 20 binary (correct/incorrect) items across four assumed factors per age group, could
be assessed with two types of factor analysis:

● Exploratory Factor Analysis (EFA) is suitable when the underlying structure is uncertain.
● Confirmatory Factor Analysis (CFA) should be used when testing a predefined model,

such as Arukay's 4-factor framework.

Since the items have a dichotomous (i.e., binary) outcome (students can either be correct or
incorrect), standard factor analysis (which assumes continuous data) is inappropriate. Instead,
you could use tetrachoric correlation matrices as input, which estimate the relationships
between latent continuous traits underlying the binary responses (Brown, 2015; Holgado-Tello
et al., 2010; Kilic, Uysal, & Atar, 2020). To have enough variables to estimate the factor
structure accurately, collecting at least five items in each factor (e.g. decomposition) rather than
the three currently used items is recommended.

If Arukay also integrates the suggested 20-item self-report measure (The computational
thinking scale, Tsai et al., 2020), then factor analysis of this self-report scale could also be
performed, and the individual items in Arukay’s baseline assessment would be correlated with
it. These analyses can be performed in many different statistical software packages, including
R (free), JASP (free), or Mplus (paid).

Criterion Validity: To establish criterion-related validity, it is suggested to correlate the Arukay
test scores with those from another validated assessment of similar constructs (e.g., digital

34

literacy, logic, or computational thinking tests). A moderate to high correlation indicates the tool
measures what it claims to measure (Crocker & Algina, 2006).

Content Validity: This can be used to check that test items reflect the target competencies.
This should involve expert reviews by subject matter specialists (e.g., educators, curriculum
designers), who evaluate whether each item aligns with the learning outcomes and skills
Arukay aims to assess (Haynes, Richard, & Kubany, 1995).

Predictive Validity: Assess how well test scores forecast future performance in academic or
applied contexts—such as performance in coding competitions or standardized STEM exams.
A method to do this relies on regression analysis (Anastasi & Urbina, 1997; Wong, 2020).

Item analysis: The difficulty index measures how easy or difficult a question is. A higher
difficulty index means the question was easier, while a lower index indicates a more difficult
question. This measure can be easily calculated by dividing the number of students who
answered a question correctly by the total number of students who took the test. The result is
expressed as a percentage. Guideline cut-offs can be viewed in this report's ‘Results’ section.

Reliability: Cronbach’s alpha or the Kuder-Richardson Formula 20 (KR-20) could be used to
assess the reliability of the individual items that evaluate each construct (e.g. decomposition).
An alpha of 0.7 or higher is generally considered acceptable, reflecting good internal
consistency.

Pilot Testing - once the tool is revised, according to our recommendations

Representative Administration: The revised tool should be pilot-tested with a sample
reflecting the diversity of the target population across the three age groups. Ensuring
demographic and skill-level variability will help assess whether the tool functions equally well
across developmental stages.

Minimum Sample Size: Arukay’s assessment assumes a model of 4 factors measured by 20
binary items, analyzed separately by age group. Based on guidelines for factor analysis with
categorical data (MacCallum et al., 1999; Wolf et al., 2013), a minimum of 150–200 participants
per age group is recommended. Power analysis for CFA with binary items can be conducted
using software like Mplus or R (Kim, Winkler, & Talley, 2021).

Test-Retest Reliability: To evaluate the stability of the assessment over time, it is useful to
check the revised tools test-retest reliability study. For this, it is recommended that the test be
re-administered to the same group of students after 1–2 months and the correlation between the
two sets of scores be computed. A high correlation (e.g., r ≥ .70) suggests the tool yields
consistent results across time points (Nunnally & Bernstein, 1994).

35

Anticipating Challenges and Iterative Adjustments

During the validation process, it could be important to anticipate and respond to challenges
that may arise. For example, initial pilot data may reveal that certain items do not load clearly
onto the expected factors or display limited variability (e.g., items that are too easy or too
difficult), prompting item revision or replacement. Similarly, reliability indices for some
constructs may fall below acceptable thresholds, requiring refinement of item wording or the
addition of more items per factor. Differences in how the assessment performs across age
groups could also indicate the need for age-specific adaptations or alternative forms.
Moreover, recruitment for pilot testing may yield uneven sample sizes across groups, which
may necessitate extending data collection or applying statistical techniques for handling
unequal group sizes. Throughout the process, Arukay should adopt an iterative
approach—analyzing results, revising the tool, and retesting where necessary—to ensure the
final assessment is both psychometrically sound and developmentally appropriate across
contexts.

Final Note

These steps will support Arukay in developing a scientifically rigorous, valid, and reliable
assessment tool. We recommend partnering with experienced psychometricians or academic
institutions to guide the validation process and ensure appropriate statistical modeling,
especially given the binary nature of the items and the assumption of a four-factor structure.

36

The following table summarizes the proposed steps for validating the Arukay assessment tool,
outlining key actions, purposes, and the types of expertise needed for implementation. The
timeline for each step varies and will depend on Arukay’s overall research stage and available
expertise.

Step Action Details Suggested
Expertise

Construct
Validity

Perform EFA or CFA
using tetrachoric
correlations

Confirms the assessment
reflects the intended 4-factor
structure; appropriate for binary
items

Psychometrician
or Quantitative
Researcher

Criterion
Validity

Correlate scores with
external measure

Demonstrates alignment with
another validated assessment
of similar constructs

Psychometrician
or Social
Science
Researcher

Content
Validity

Expert review of items
against curriculum
goals

Ensures items comprehensively
reflect target competencies;
may involve panels or
structured rubrics

Curriculum
Specialist or
Educator

Predictive
Validity

Link current scores
with future
performance

Use regression or classification
models to assess how scores
forecast academic outcomes

Data Analyst or
Educational
Researcher

Item
analysis

Check that the overall
accuracy of each item
is in a good range to
pick up differences

Calculate the percentage
correct for each item in the
measure

Data analyst

37

Reliability Check that the items
within each factor are
reliable measures of
the factor

Use Cronbach’s alpha or binary
measure alternatives

Data analyst

Pilot
Testing

Administer revised
assessment to
150–200 students per
age group

Ensures robust data for
analysis; sample should reflect
diversity across age groups

Data Analyst or
Field Coordinator

Test-Retest
Reliability

Re-administer test
after ~2 months

Evaluates score stability over
time by correlating initial and
follow-up results

Psychometrician
or Data Analyst

38

Deliverable 4: Linking Arukay’s
Mission with Global Partners
Arukay’s work links up with the bigger picture in education through understanding school
needs and preparation for various competitions of significance. Our goal is to help Arukay think
through how it should pitch its value to students, parents and teachers and how it can link up
with larger global partners for funding and support.

We started with Raspberry Pi Foundation given its prominence in the spaces of computational
thinking and education. Raspberry Pi Foundation has developed a formal framework for
computational thinking skills. The official document can be reviewed here as a reference:

The thinking behind the framework seems to be that it should be detailed enough to allow
educators to build the key ideas into learning activities and resources and even use them to
assess students.

These perspectives on computational thinking include experiences in the classroom and hence
provide a different sort of perspective.

They define CT as a set of ideas and thinking skills that people can apply to design solutions or
systems that a computer or computational agent can enact.

Underpinning all aspects of computational thinking is the logical analysis of problems and
solutions. In that sense this is consistent with our earlier definitions which span both the uses
of computers in problem-solving and general problem-solving techniques applicable to a wider
range of scenarios.

They think of CT in terms of 6 distinct components:

● Decomposition in terms of identifying when a problem needs to be broken down, when
instructions need to be broken down and when a problem can be broken down into
simpler versions of itself. This includes an appreciation for how information flows
between components, sensors and output devices. In that sense their interpretation of
decomposition is less abstract than what we shared earlier in the report.

● Algorithm design in terms of sequencing instructions, grouping instructions, picking
between instructions, the use of arithmetic and logical operators for instructions,
naming collections of instructions and thinking of data in terms of variables and
assignments. This includes identifying a range of test data and controlling the flow of

39

https://www.raspberrypi.org/app/uploads/2021/11/Raspberry_Pi_Foundation_Computational_Thinking_Framework_v1-2.pdf

data through an algorithm. Again this definition stresses the importance of input and
output and data flow and provides a different template upon which you could build
assessment questions.

● Patterns and generalisation in terms of recognizing where multiple solutions are
possible, predicting outcomes drawing on prior knowledge and transferring ideas from
one problem to another. This idea of knowledge transfer which is widely discussed in
literature about pedagogy and education is thus important to their definition of
computational thinking.

● Abstraction in terms of reducing complexity, representing artefacts, identifying
relationships and filtering information and modeling the behaviour of systems. The ideas
of modeling, systems and artefacts are thus central to how they think about abstraction.

● Evaluation in terms of defining problems, design plans for testing and stepping through
algorithms step by step and rigorous arguments to justify an algorithm. This includes
social and ethical norms. These are also new ideas in computational thinking in that it
makes students think in terms of testing plans and implementation which maps on to
real world work. The social and ethical norms provide an important perspective in
thinking about where data comes from and how the results are interpreted.

● Data in terms of solution fit, effectiveness, efficiency and modeling. The idea of
efficiency in using data and thinking about computational efficiency and physical
considerations are thus important to their interpretation of computational thinking.

Participation in Robotics competitions

As discussed on calls, Arukay is interested in understanding how global robotics
competitions link up with education around computational thinking as these
competitions are of significance among students across Latin America.

Here are some of the key ideas extracted from this paper, based on mixed methods
research among coaches of the World Robotics Olympiad 2019:

● The significance of robotics in STEM comes from how they convey complex
mathematical and scientific thinking. It is also established that they bring to students
innovative spirit and practical ability as well as computational thinking and
problem-solving.

● The significance of robotics education is even among rural elementary students as
demonstrated by the Children’s Robot Theater. This is based on data from this paper
that involves studying this phenomenon in rural China across two years and reports
consistent findings.

● There is a range of global robotics competitions even beyond the World Robotics
Olympiad that can be explored:

○ Botball

40

https://www.aimsciences.org/article/doi/10.3934/steme.2022002

○ FIRST organization
○ RoboCup Junior

● The focus in such competitions tends to be on teaching robot design, assembly,
coding, operations and modifications.

● Particularly in China, there is an emphasis on training agencies that specialize in
teaching students how to build the robots quickly

● Coaches' feedback suggests a general consensus on how students who take part in
such competitions improve programming skills and develop knowledge and skills
around teamwork, career planning, interacting with foreigners and bringing honors to
their country. The main areas of improvement are consistent concentration and team
cohesion throughout the project.

Based on this, we reviewed another paper reviewing how computational thinking is integrated
into secondary education.

● The focus in this paper is integrating computational thinking through project based
learning into a secondary school in Barcelona, Spain

● The purpose of such programs is to lay the foundations for future programmers
● These programs also need to be seen as a means to develop a person for society
● Data collected has found that participating in such programs improve their performance

and motivation
● The involvement in such programs improves computational thinking across concepts,

practices and perspectives

We feel that these points should be communicated by Arukay to stakeholders who are thinking
how computational thinking benefits them.

Given the significance of Raspberry Pi Foundation to global growth in computational thinking,
we identified a series of possible collaborations that you could reach out to them for:

● They support Code Clubs around the world with resources and training and many of
these activities are ancillary to what Arukay might want to take up

● They look for research partners particularly in areas like: developing frameworks for
teaching AI/ML/data science to young people, role of language in the programming
classroom and the support from AI tools, computer pedagogy in formal and informal
settings, the impact of different approaches to curriculum and policy and the value of
physical interfaces in teaching computing

● There is particular focus on the recent Experience AI initiative to provide free resources
to teachers on AI literacy and distribute these through partners

● One of the concerns raised on a previous call was the expense around Raspberry Pi
products. We’d like to emphasize that it is possible to collaborate with them on
education and computational thinking without specifically deploying their hardware.

41

https://www.mdpi.com/1424-8220/22/10/3746

Even if you are interested in using their hardware, there seem possibilities around
fundraising either directly through them or via third parties that can make this happen.

Bebras Computational Thinking Challenge

Bebras is an international initiative designed to promote Informatics (Computer Science) and
computational thinking among students of all ages. The Bebras challenge, typically integrated
into classroom activities by teachers, encourages students to develop problem-solving skills
through engaging tasks that can be completed on computers or mobile devices.
Computational thinking, a key focus of the challenge, involves breaking down complex
problems, designing algorithms, recognizing patterns, and applying abstraction—skills
essential for software development and logical reasoning. The main Bebras challenge takes
place during the second week of November, recognized as World-Wide Bebras Week, though
many countries extend it to two weeks or run related activities year-round. These include award
ceremonies, second-round challenges, summer camps, teacher workshops, and research
initiatives, further strengthening computational thinking education worldwide.

● Bebras includes five computational thinking skills:

Table adapted from Bebras, Computational Thinking Cheat Sheet (2022), https://www.bebras.org/

CT Skill How to spot use of the skill

Abstraction

Focusing on the important information
only, ignoring irrelevant detail

Hiding unnecessary details;
Spotting key elements in
problem;

Choosing a representation of a system

Algorithmic Thinking

Developing a step-by-step solution to
the problem, or the rules to follow to
solve the problem

Thinking in terms of sequences and rules;
Executing an algorithm;

Creating an algorithm

Decomposition

Breaking down a complex problem or
system into smaller, more manageable
parts

Breaking down tasks;

Thinking about problems in terms of component parts;

Making decisions about dividing into sub-tasks with
integration in mind, e.g. deduction

42

Evaluation

Ensuring that your solution is a good
one.

Finding best solution;

Making decisions about whether good use of
resources; Fit for purpose

Pattern Recognition

Looking for similarities among and
within problems

Identifying patterns as well as similarities and
connections, and identifying when patterns are not
fully established; Extrapolating or interpolating data;

Putting repeated instructions into a loop or function;

Summary
This report presents a summary of four key deliverables developed as part of the LEAP
project—a collaborative initiative between four LEAP Fellows and the Arukay organization.

The first deliverable focused on validating Arukay’s existing measurement framework. This
included a review of current frameworks and baseline quizzes, a literature review guided by
Arukay’s core questions and a rapid review to align findings with the framework. It concluded
with tailored recommendations to enhance Arukay’s current tool.

The second deliverable built on this foundation by reviewing methodologies for data
collection and analysis, assessing rater alignment, and conducting an analysis of the
psychometric properties of the Arukay measurement tool.

The third deliverable expanded these recommendations by suggesting concrete ways to
strengthen and test a revised tool—both with existing resources and through future internal or
external research—with particular attention to measurement validity and statistical analyses.

The fourth deliverable provided a strategic perspective on Arukay’s broader impact and future
directions. It highlighted opportunities to position Arukay more effectively within the global
conversation on computational thinking, and to attract interest and funding from major
foundations and international organisations operating in the same space of computational
thinking and young learners.

The key aspects of this project’s contribution are visually summarised in Figure 4, followed by a
list of key take-aways.

43

Figure 4: Visual summary of the key project’s contributions

What is computational thinking and what are CT’s key frameworks?

● Computational thinking consists of four key techniques (decomposition, pattern
recognition, abstraction, and algorithms), which work together to structure and solve
problems efficiently.

● Computational thinking extends beyond programming, serving as a cross-disciplinary
problem-solving approach applicable in fields like mathematics, science, and the arts.

44

● Key frameworks include Papert’s exploratory learning approach (1980), Wing’s
conceptualization of CT as a universal skill (2006), Brennan & Resnick’s
three-dimensional framework (2012), Tikva & Tambouris’s five-area model (2021), and
Zapata-Cáceres’s computational thinking assessment (2020).

● Ongoing research aims to integrate socio-emotional aspects with computational skills
to develop a more comprehensive framework that enhances both cognitive and
collaborative learning.

Is any framework of CT more evidence-based than any other framework?

● Systematic reviews have probed how we can teach teachers to use CT in their
classrooms. The current consensus is that future research should investigate what
constitutes “good CT instruction” and how it can be effectively measured with robust
assessment tools.

● There is some emerging evidence that teaching elements of CT improves
problem-solving, critical thinking, social skills, self-regulation, and other academic skills
such as reading and spelling. There is limited evidence for the evidence base of
adopting one framework over others.

● There are several assessments of CT that have been developed and evidence that some
measures show reasonable reliability. Assessments should include multiple choice
correct/incorrect answers as well as self-reported evaluations of the level of CT that
students adopt (such as the Computational Thinking Scale, Tsai et al, 2020).

● Ocampo et al (2024) provide the latest systematic review of instruments to assess CT.

Variability in Computational Thinking (CT) Frameworks

● CT frameworks are shaped by cultural values, educational goals, and technological
access, influencing how CT is taught, with some cultures emphasizing group
collaboration and cooperation, while others may prioritize individual problem-solving.

● Frameworks are tailored to students' cognitive and socio-emotional development, from
hands-on tools for younger children to complex problem-solving for older students.

● The scope of CT frameworks varies across disciplines and educational contexts, with a
focus on foundational skills in K-12 and technical specialization in higher education.

● CT frameworks emphasize collaboration, creativity, and problem-solving, with tools like
Scratch used in elementary and middle schools for interactive learning.

 Linking Arukay’s Mission with Global Partners

● For growth and sustainability, Arukay should look to the significance of computational
thinking to global foundations as well as applications to practical competitions such as
robotics ones.

45

● Bebras and Raspberry Pi Foundation have their own practical frameworks with some
relevance to how Arukay frames its content. Arukay can review these as a way of
associating with such brands. There is also the potential to partner with Raspberry Pi
Foundation through various models proposed

● There is some synergy with the skills needed to succeed in global robotics competitions
and Arukay can stress this relationship in building its profile and partnerships

46

References
AERA, APA, & NCME. (2014). Standards for Educational and Psychological Testing.
Washington, DC: American Educational Research Association. Available from
https://www.testingstandards.net/uploads/7/6/6/4/76643089/standards_2014edition.pdf

Anastasi, A., & Urbina, S. (1997). Psychological Testing (7th ed.). Prentice Hall.

Bocconi, S., Chioccariello, A., & Earp, J. (2018). The Nordic approach to introducing
Computational Thinking and programming in compulsory education. Report prepared for the
Nordic@BETT2018 Steering Group. https://doi.org/10.17471/54007

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the
development of computational thinking. Proceedings of the 2012 annual meeting of the
American educational research association (Vol. 1, p. 25).

Brown, T. A. (2015). Confirmatory Factor Analysis for Applied Research (2nd ed.). New York:
The Guilford Press.

Crocker, L., & Algina, J. (2006). Introduction to Classical and Modern Test Theory. Mason, OH:
Cengage Learning.

Digital Promise (online). What is Computational Thinking? Available from:
https://digitalpromise.org/initiative/computational-thinking/computational-thinking-for-next-gen
eration-science/what-is-computational-thinking/

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. B. (2017). Algorithmic thinking,
cooperativity, creativity, critical thinking, and problem solving: exploring the relationship
between computational thinking skills and academic performance. Journal of computers in
education, 4, 355-369.

Eisenberg, N., Spinrad, T. L., & Knafo-Noam, A. (2015). Prosocial development. In M. E. Lamb
& R. M. Lerner (Eds.), Handbook of child psychology and developmental science:
Socioemotional processes (7th ed., pp. 610–656). John Wiley & Sons, Inc.
https://psycnet.apa.org/doi/10.1002/9781118963418.childpsy315

Erikson, E. H. (1963). Childhood and society. Norton & Company.

Gouws, L., Bradshaw, K., & Wentworth, P. (2013, October). First year student performance in a
test for computational thinking. In Proceedings of the South African Institute for Computer
Scientists and Information Technologists Conference (pp. 271-277).

47

https://www.testingstandards.net/uploads/7/6/6/4/76643089/standards_2014edition.pdf
https://doi.org/10.17471/54007
https://digitalpromise.org/initiative/computational-thinking/computational-thinking-for-next-generation-science/what-is-computational-thinking/
https://digitalpromise.org/initiative/computational-thinking/computational-thinking-for-next-generation-science/what-is-computational-thinking/
https://psycnet.apa.org/doi/10.1002/9781118963418.childpsy315

Grover, S., & Pea, R. D. (2013). Computational thinking in K-12 education. Educational
Researcher, 42(1), 38-43. https://doi.org/10.1145/2462782.2462801

Haynes, S. N., Richard, D. C. S., & Kubany, E. S. (1995). Content validity in psychological
assessment: A functional approach. Psychological Assessment, 7(3), 238–247.

Holgado-Tello, F. P., Chacón-Moscoso, S., Barbero-García, I., & Vila-Abad, E. (2010). Polychoric
versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables.
Quality & Quantity, 44(1), 153–166.

Kikas, E., Henn, A., & Kärt, O. (2020). A national approach to teaching computational thinking:
The Estonian experience. Computer Science Education, 30(4), 1-18.
https://doi.org/10.1007/s11423-020-09718-5

Kilic, D., Uysal, D., & Atar, B. (2020). Investigation of the construct validity of a binary scored
scale by factor analysis: An application in STEM education. Participatory Educational Research,
7(3), 89–107.

Kim, M., Winkler, C., & Talley, S. (2021). Binary item CFA of behavior problem index (BPI) using
Mplus: A step-by-step tutorial. The Quantitative Methods for Psychology, 17(2), 141-153.

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the
computational thinking scales (CTS). Computers in human behavior, 72, 558-569.

Liu, Z., Gearty, Z., Richard, E., Orrill, C. H., Kayumova, S., & Balasubramanian, R. (2024).
Bringing computational thinking into classrooms: a systematic review on supporting teachers in
integrating computational thinking into K-12 classrooms. International Journal of STEM
Education, 11(1), 51.

Lourenço, O., & Machado, A. (1996). In defense of Piaget's theory: A reply to 10 common
criticisms. Psychological review, 103(1), 143.https://doi.org/10.1037/0033-295X.103.1.143

MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis.
Psychological Methods, 4(1), 84–99.

National Research Council, Division on Engineering, Physical Sciences, Computer Science,
Telecommunications Board, & Committee for the Workshops on Computational Thinking.
(2010). Report of a workshop on the scope and nature of computational thinking. National
Academies Press.

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory (3rd ed.). New York:
McGraw-Hill.

48

https://doi.org/10.1145/2462782.2462801
https://doi.org/10.1007/s11423-020-09718-5
https://psycnet.apa.org/doi/10.1037/0033-295X.103.1.143

Ocampo, L. M., Corrales-Álvarez, M., Cardona-Torres, S. A., & Zapata-Cáceres, M. (2024).
Systematic review of instruments to assess computational thinking in early years of schooling.
Education Sciences, 14(10), 1124.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic
Books.

Piaget, J. (1952). The origins of intelligence in children. International Universities Press.

Popat, S., & Starkey, L. (2019). Learning to code or coding to learn? A systematic review.
Computers & Education, 128, 365-376.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., & Brennan, K. (2009).
Scratch: Programming for all. Communications of the ACM, 52(11), 60-67.
https://doi.org/10.1145/1592761.1592779

Shen, L., Mirakhur, Z., & LaCour, S. (2024). Investigating the psychometric features of a locally
designed computational thinking assessment for elementary students. Computer Science
Education, 1–20. https://doi.org/10.1080/08993408.2024.2344400

Tikva, C., & Tambouris, E. (2021). Mapping computational thinking through programming in
K-12 education: A conceptual model based on a systematic literature review. Computers &
Education, 162, 104083.

Tsai, M. J., Liang, J. C., & Hsu, C. Y. (2021). The computational thinking scale for computer
literacy education. Journal of Educational Computing Research, 59(4), 579-602.

Vihavainen, A., Paksula, M., & Järvinen, H. (2014). Exploring the relationship between
problem-based learning and computational thinking in programming education. Computer
Science Education, 24(2), 137-156. https://doi.org/10.1007/s11357-014-8651-6

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size requirements for
structural equation models. Educational and Psychological Measurement, 73(6), 913–934.

Wong, S.-C. (2020). Competency Definitions, Development and Assessment: A Brief Review.
International Journal of Academic Research in Progressive Education and Development, 9(3),
95–114.

Zapata-Cáceres, M., Martín-Barroso, E., & Román-González, M. (2020, April). Computational
thinking test for beginners: Design and content validation. IEEE Global Engineering Education
Conference (EDUCON), 1905-1914.

49

https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1080/08993408.2024.2344400
https://doi.org/10.1007/s11357-014-8651-6

	Executive Summary
	Introduction
	Organisation’s role & strength
	Need summary
	Solution summary & next steps
	Validated Measurement Framework: Arukay aims to refine its assessment methods to ensure accurate measurement of student progress and digital skill acquisition. This includes:

	Deliverable 1: Literature review
	1. What are the different frameworks of computational thinking?
	2. Is any framework of computational thinking more reliable/evidence-based than any other framework?
	Evidence base for teaching teachers Computational Thinking to use in classrooms
	Evidence base for the benefits of computational thinking for students
	Evidence base for assessing computational thinking and how to teach CT

	3. Does Framework Variability Relate to Different Countries, Different Scopes or Different Age Groups?

	Deliverable 2: Evaluation of the Arukay assessment tool and its psychometric properties
	
	Process
	Results
	Difficulty index for baseline assessments
	Combined ratings for different constructs assessed by the fellows.
	Combined ratings for individual items
	Baseline 3 to 5
	Baseline 6 to 8
	Baseline 9 to 11

	Recommendations to Arukay

	Deliverable 3: Recommendations for Arukay to validate the revised the baseline assessment tool
	Next steps for Arukay to validate the baseline assessment
	Recommendations for Validating the Arukay Assessment Tool

	
	
	
	
	Deliverable 4: Linking Arukay’s Mission with Global Partners
	Participation in Robotics competitions
	Bebras Computational Thinking Challenge

	Summary
	
	References

