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Executive Summary   
 

Introduction  

Arukay is an EdTech company dedicated to equipping students in Latin America with essential 
digital skills, computational thinking, and coding expertise to prepare them for the demands of 
a technology-driven world. By integrating digital literacy into K-12 education, Arukay aims to 
break cycles of poverty and create opportunities for future generations. For over a decade, 
Arukay, as a growing organization has impacted over 100,000 students across multiple Latin 
American countries, Arukay seeks to strengthen the evidence base of its educational model 
through a LEAP Project with MIT Solve. 

 

Organisation’s role & strength 

Arukay operates as a for-profit EdTech company with a mission to transform education by 
making digital literacy accessible to students, regardless of socioeconomic background. The 
organization is led by CEO and co-founder Vicky Ricaurte, whose expertise in management 
and educational technology positions the company as a leader in the field. The team includes 
specialists in curriculum development, platform engineering, finance, and commercial outreach, 
ensuring cross-functional collaboration and strong implementation capabilities. Arukay’s 
success is driven by its structured and dynamic instructional design, robust teacher training 
programs, and advanced data analytics for learning assessment. 

 

Need summary 

Latin America faces a critical digital skills gap, with only 17% of students advancing to higher 
education and a slow intergenerational economic progression. The lack of systematic, early 
digital education exacerbates social inequalities and limits economic mobility. Arukay seeks to 
address this challenge by integrating coding and computational thinking into primary and 
secondary education. However, to maximize impact, the organization requires a stronger 
evidence base to validate its effectiveness, refine assessment methodologies, and develop 
scalable measurement frameworks. 
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Solution summary & next steps 

● High-Quality Curriculum: Age-appropriate, multilingual digital literacy courses. 
● Teacher Training & Support: Equipping educators with the necessary tools to integrate 

computational thinking into their classrooms. 
● Advanced Reporting & Analytics: Providing real-time insights into student progress. 

The next steps include leveraging the LEAP Project to: 

1. Improve the design of formative and summative assessments. 
2. Enhance data collection methodologies for measuring soft and hard skill acquisition. 
3. Develop a long-term framework to track computational thinking skills across primary 

and elementary education. 

Deliverable 1  

Validated Measurement Framework: Arukay aims to refine its assessment methods to ensure 
accurate measurement of student progress and digital skill acquisition. This includes: 

● Establishing a structured methodology for measuring learning outcomes. 
● Aligning assessment tools with international standards such as ISTE and CSTA. 
● Ensuring that measurement strategies provide meaningful insights for educators and 

stakeholders. 

Deliverable 2  

Improved Data Collection & Analysis Methodologies: The LEAP Project will support the 
development of a research-backed approach to data gathering and analysis, leading to: 

● Enhanced data accuracy and reliability through systematic collection techniques. 
● More effective teacher engagement in data-driven instructional decisions. 
● A scalable model for tracking computational thinking skill development over time. 

Deliverable 3 

Redesign of a Revised Computational Thinking Measurement Tool: Arukay will redesign a 
revised version of a vehicle to measure the acquisition of computational thinking skills across 
primary and elementary school years. This includes: 

● Defining key performance indicators to track long-term student progress. 
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● Developing an adaptive measurement system to ensure accurate skill assessment over 
time. 

● Creating a structured framework to integrate the tool within existing educational 
programs. 

 Deliverable 4 

Linking Arukay’s Mission with Global Partners: The LEAP team will identify partnerships that 
make sense for Arukay as it looks to grow its global footprint: 

● Sharing the computational thinking framework followed by the Raspberry Pi Foundation 
as a reference 

● Identifying partnership models that may align Arukay with the Raspberry Pi Foundation 
● Reviewing academic literature on the significance of computational thinking in preparing 

students for robotics competitions as part of making Arukay think about its significance 
to schooling 
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Deliverable 1: Literature review 
 
As a first step, we identified, in collaboration with Arukay, three key outstanding questions in 
the field of computational thinking. Fellows then reviewed the literature to provide an evidence 
base to answer these outstanding questions before evaluating the assessment tools currently 
used. 
 

1. What are the different frameworks of computational thinking? 

 
Computational thinking 

Computational thinking is a structured and systematic approach to problem-solving that 
enables individuals to break down complex problems, recognize patterns, focus on relevant 
information, and develop algorithmic solutions. It is a fundamental skill that extends beyond 
computer science, integrating into various academic disciplines and real-world applications 
(Digital Promise, n.d.). Before a problem can be effectively addressed, it must first be 
thoroughly understood, including the potential methods by which it can be resolved. 
Computational thinking provides a framework to achieve this understanding and formulate 
solutions that can be executed by humans, computers, or both. 
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Figure 1: Image from BBC Bitesize, What is computational thinking? Available from: 
https://www.bbc.co.uk/bitesize/guides/zp92mp3/revision/1 

The Four Cornerstones of Computational Thinking 

Computational thinking is underpinned by four essential techniques, often referred to as its 
cornerstones: decomposition, pattern recognition, abstraction, and algorithms. Each of these 
components plays a vital role in structuring and solving problems efficiently. 

● Decomposition involves breaking down a complex problem or system into smaller, 
more manageable parts. This process makes intricate challenges more approachable by 
dividing them into simpler sub-problems, each of which can be analyzed and resolved 
individually before integrating the solutions into a cohesive whole. 

● Pattern Recognition is the practice of identifying similarities and trends within 
problems. By recognizing recurring themes or structures, individuals can apply previous 
solutions to new problems, thereby increasing efficiency and reducing redundant effort. 
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● Abstraction focuses on isolating the most critical information while disregarding 
irrelevant details. This technique ensures that problem solvers concentrate on essential 
elements, making the process of finding a solution more streamlined and effective. 

● Algorithms involve formulating a step-by-step procedure or set of rules to solve a 
problem. These procedures can be expressed in a manner that is comprehensible to 
both humans and computers, ensuring clear and repeatable execution. 

Each of these techniques is equally important, functioning as interconnected skills that 
collectively enhance the ability to solve problems systematically. The absence of any one 
component weakens the overall problem-solving process, much like a table missing a leg. 
When applied correctly, these techniques are particularly beneficial in programming, as they 
help structure logical and efficient code. 

The Broader Scope of Computational Thinking 

Computational thinking extends beyond the realm of computer science. It is an interrelated set 
of skills and practices that facilitate the resolution of complex problems across various 
disciplines, including mathematics, science, social studies, and the arts. While computing 
encompasses both computer science and computational thinking, the latter serves as a 
cross-disciplinary approach to problem-solving. Unlike programming, which involves writing 
and debugging code to be executed by a computer, computational thinking focuses on the 
conceptual strategies that underpin effective problem-solving in diverse contexts. 

For educators seeking to integrate computational thinking into their classrooms, it is best 
understood as a continuum of interrelated skills and competencies rather than a singular, 
isolated ability. By fostering these skills in students, educators can prepare them not only for 
careers in technology but also for a world increasingly driven by computational processes. 
Computational thinking is, therefore, not just a technical skill but a fundamental cognitive 
approach that enhances critical thinking and problem-solving capabilities across multiple 
domains.  

The following rapid evidence review examines key CT frameworks, highlighting their key 
components and key contributions to the field. 

Early Foundations: Seymour Papert’s Model (1980) 

Seymour Papert was a pioneer in computational thinking, introducing the concept through the 
LOGO programming language. Papert’s work emphasized the role of computers in fostering 
exploratory learning, particularly in mathematics and artistic expression (Papert, 1980). By 
engaging children in programming, Papert aimed to cultivate higher-order thinking skills, 
reinforcing logical reasoning and problem-solving abilities. His model laid the foundation for 
integrating coding as an essential pedagogical tool, influencing subsequent CT frameworks. 
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Jeannette Wing’s Computational Thinking Framework (2006) 

Jeannette Wing (2006) significantly advanced the discourse on CT by formalizing it as a 
universal skill applicable beyond computer science. Wing conceptualized CT as involving 
problem-solving, system design, and an understanding of human behavior. Her seminal work 
argued that CT should be a fundamental competency akin to literacy and numeracy, prompting 
a global movement to integrate CT into K-12 education (Wing, 2006). This framework 
underscored the interdisciplinary relevance of CT, advocating for its inclusion in diverse 
curricula. 

Brennan and Resnick’s Three-Dimensional Framework (2012) 

Brennan and Resnick (2012) expanded upon existing CT models by introducing a 
three-dimensional framework encompassing concepts, practices, and perspectives. The 
concepts dimension includes fundamental programming constructs such as loops, 
conditionals, and sequences.They are the concepts that users need to master to understand 
the mechanics of programming, including sequences, loops, parallelism, events, conditionals, 
operators, and data. The practice dimension includes strategies that learners apply while 
solving problems, including during programming, expressing, connecting, and questioning 
concepts. The dimension draws on four main strategies: being incremental and iterative, testing 
and debugging, reusing and remixing, and abstracting and modularizing. The perspectives 
dimension accounts for the socio-emotional aspects of CT, such as collaboration and 
self-awareness.  

This model provides a structured methodology for assessing and developing CT skills in 
educational contexts. 

Tikva and Tambouris’s Five-Area Model (2021) 

Tikva and Tambouris (2021) introduced a comprehensive framework for CT that categorizes its 
components into five interconnected areas: knowledge base, learning strategies, tools, 
assessment, and capacity building. This model offers a structured approach to integrating CT 
into K-12 education, emphasizing both theoretical knowledge and practical application. By 
incorporating assessment methods, the framework ensures that CT skills are systematically 
developed and evaluated. 

Zapata-Cáceres’s Beginners Computational Thinking Test (2020) 

Zapata-Cáceres et al. (2020) designed the Beginners Computational Thinking Test (BCTt) to 
assess students' proficiency in CT concepts across different educational stages. The test 
evaluates fundamental computational constructs, including sequences, simple loops, nested 
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loops, and conditionals. While the BCTt provides a structured approach to measuring CT skills, 
it does not integrate socio-emotional components, leaving room for future research on the 
interplay between computational skills and broader cognitive abilities. 

In sum, from Papert’s pioneering work in exploratory programming to Wing’s conceptualization 
of CT as a universal literacy, each model provides unique insights into the development and 
assessment of computational skills. Future research should focus on integrating 
socio-emotional aspects with core computational skills to create a holistic CT framework that 
supports both cognitive and collaborative learning. 

2. Is any framework of computational thinking more 
reliable/evidence-based than any other framework? 

As reviewed in the previous section, many different definitions of computational thinking (CT) 
exist. Some definitions have been inspired by the culture and the technicalities of professional 
computer science, whereas others have been developed by educators and researchers. These 
issues surrounding definition have made it hard to assess whether there is a suitable evidence 
base supporting the teaching of CT to students. Similarly, the ongoing discussion and 
confusion surrounding the definition of CT have led to varied interpretations and 
operationalization in implementing CT in teachers' professional learning. If we converge on a 
general definition as the ability to analyze and solve various problems based on cognitive 
competencies and dispositions (Wing, 2010) we can next ask whether there is an evidence 
base that supports specific components being essential to these factors. However, it is too 
early to answer whether one framework has a stronger evidence base than any other 
framework. 

11 



 
 

 

Evidence base for teaching teachers Computational Thinking to use in classrooms 

 
The evidence base is rapidly expanding given the sharp increase in the impact of information 
technologies in our lives. However, rigorous research studies are still in their infancy.  One of 
the best types of evidence comes in the form of systematic reviews that can take a ‘gold 
standard’ empirical approach to surveying the literature and drawing conclusions. Liu et al., 
(2024) conducted a systematic review on supporting teachers in integrating computational 
thinking into K-12 classrooms. They surveyed the literature with key terms including the topic 
word “computational thinking”, a set of synonyms for professional development (i.e., 
“professional development”, “teacher development”, “training”, “intervention”, and “workshop”) 
and a set of synonyms for the potential outcomes of professional development (i.e., “teacher 
thinking”, “teacher perception”, and “teacher knowledge”). They concluded that future research 
should investigate what constitutes “good CT instruction” and how it can be effectively 
measured. This includes developing robust assessment tools that can capture teachers’ 
professional growth longitudinally and its impact on student performance.  
 
 
 

 
Figure 2. Schematic showing operationalisation of computational thinking in light of how it 
impacts professional development. 
 
Those with a stronger emphasis on computing tool usage on the right side of the spectrum 
while the operationalizations with a heavier emphasis on thinking abilities on the left side of the 
spectrum. None are more valuable than another, but they are useful for contextualising the 
complex landscape of computational thinking for professional development for teachers. From 
Liu et al., (2024). 
 

Evidence base for the benefits of computational thinking for students 
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Despite widespread agreement that teaching CT is beneficial for students, there remain very 
few empirical studies with rigorous research methods supporting a benefit. The National 
Research Council (United States) concluded that teaching programming improves 
interpersonal, self-regulatory, and metacognitive thinking skills (NRC, 2010). However, another 
study found a negative relationship between cooperativity and academic performance, and no 
association with algorithmic thinking, critical thinking, creativity, and problem-solving (Doleck et 
al., 2017). There is some evidence that teaching CT improves performance on a computer 
science course (Gouws et al., 2013). As mentioned, one of the best types of evidence at the 
early stage of developing an evidence base are systematic reviews. A systematic review of 
K-12 CT research found that teaching coding influenced a range of educational outcomes, 
including problem-solving, critical thinking, social skills, self-regulation, and other academic 
skills, such as reading and spelling (Popat & Starkey, 2019).  
 

Evidence base for assessing computational thinking and how to teach CT 

 
Another important question is whether there is an evidence base for how to assess 
computational thinking and how to teach it, and whether particular methods are more reliable 
than others. Vihavainen et al. (2014) found that teaching interventions focused on CT can 
improve programming pass rates by nearly one-third when compared to a traditional lecture 
and lab-based approach. These included peer-led team learning, pair-programming, 
peer-teaching as well as designing relatable content adapted to student interests and needs, 
including effective media design, real-world projects, and gamification.  
 
Self-report measures, where students are asked questions about how much they have 
developed CT skills, have also begun to be developed. The Computational Thinking Scale is a 
29-item instrument composed of five factors, namely creativity, cooperativity, algorithmic 
thinking, critical thinking, and problem-solving (Korkmaz et al., 2017). They suggested that the 
psychometric properties of the scale were good, and the measures have been cited over 700 
times. However, this scale was developed to assess CT skills in undergraduate degree students 
and is likely not suitable for younger students. Another scale, also called The Computational 
Thinking Scale (Tsai et al., 2020), but developed for young people ages 13 to 15, focused on 5 
core CT components (abstraction, decomposition, algorithmic thinking, evaluation and 
generalization). They found good validity and reliability for the assessment. The items are 
shown below. 
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Figure 3. The computational thinking scale. A validated measure for young people aged 13-15 
(Tsai et al., 2020). 
 
Another measure with programming items, The computational thinking assessment scale (Shen 
et al., 2024), is used to assess children ages 8-11. It consists of 10 items, 9 multiple-choice 
questions and 1 open-ended question. The questions focus on students' ability to think 
algorithmically and apply computational processes in different contexts. In a study of 222 
children, they found the CTAS to be a strong tool for assessing computational thinking. In a 
systematic review of measures assessing computational thinking (Ocampo  et al., 2024) 
concluded that: 
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- Validity is the most reported psychometric property in CT measurement  
- Abstraction is the most evaluated skill in computational thinking measurement 

instruments. 
- In Latin America, there is an absence of instruments for measuring CT 
- Türkiye, USA, and China lead the publication of articles that evaluate CT  
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Figure 4. Overview of computational thinking assessment tools developed since 2023. 
Adapted from Ocampo et al., (2024). 
 
In summary, when assessing an evidence base, there are several important factors to consider. 
Is there evidence for how best to inform teachers of CT for their professional development? 
Second, does teaching CT improve students' academic performance and abilities and does 
this generalize to other areas of learning? Finally, how can we best assess CT empirically to 
improve the evidence base of the first two questions? 
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3. Does Framework Variability Relate to Different Countries, Different 
Scopes or Different Age Groups? 

Variability in Computational Thinking Frameworks Across Countries and Cultures 

Computational Thinking (CT) frameworks are influenced by many factors, such as the 
educational goals of each country, cultural values, and available resources. As CT is integrated 
into school curriculums in different countries, it is important to understand how age-related 
development affects how these frameworks are taught. Key factors include cognitive 
development (how children think and learn) and socio-emotional development (how they 
manage emotions and interact with others). These factors change as students grow older. 

For example, in countries like the United States, large initiatives like Computer Science for All 
focus on teaching coding and algorithms (Grover & Pea, 2013). However, in countries with less 
access to technology, CT might focus more on problem-solving and teamwork (Ocampo et al., 
2024). This shows how frameworks must adjust depending on each country’s culture, 
economy, and technology. Additionally, these frameworks should take into account the 
age-related development of students, including their emotional and social needs. 

Differences in Scope of Frameworks Across Disciplines and Educational Contexts 

The scope of CT frameworks differs across subjects, school levels, and even age groups. 
Children’s ability to understand complex concepts changes as they get older. For example, 
younger children may need frameworks that focus more on basic skills, while older students 
can handle more advanced topics. As children develop cognitively, their ability to think more 
abstractly grows. For instance, when students are younger, they might focus on concrete tasks 
like solving puzzles, but by adolescence, they can work on more abstract concepts like 
designing computer programs, a pattern that aligns with Piaget’s original theory (1952), 
although it is not universally accepted (Lourenco & Machado, 1996). 

Additionally, emotional development, such as learning how to control one’s emotions (called 
emotional regulation) and understanding how to work well with others (called prosocial 
behavior), also influences how they engage with learning. Emotional regulation refers to the 
ability to manage and control one's emotional responses, while prosocial behavior includes 
actions that benefit others, such as helping or sharing. As students grow, they become more 
able to manage emotions and engage in collaborative work, which can improve how they learn 
computational thinking (Eisenberg, Spinrad, Knafo-Noam, 2015). 

 

Age Group Variability in the Application of CT Frameworks 

Middle Childhood (Ages 6-11) 
During middle childhood, children develop the ability to think logically about tangible objects 
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and relationships, but they may struggle with abstract reasoning (Piaget, 1952). At this age, CT 
frameworks often use hands-on tools like Scratch, a visual programming language. These tools 
allow children to manipulate images and objects on the screen to learn concepts like loops and 
sequences without needing to understand complex programming syntax (Resnick et al., 2009). 
This hands-on approach helps children break down problems into simpler parts, which is a key 
skill in computational thinking. 

In terms of socio-emotional development, children at this age start to develop better social 
skills, such as working together with peers. Erikson (1963) calls this stage the development of 
competence through interactions with others. CT frameworks can take advantage of this by 
encouraging group-based activities. Group learning helps children develop skills such as 
communication, empathy, and teamwork. Emotional regulation also plays a role here, as 
children at this age start to learn how to manage their emotions in social situations, which can 
improve collaboration (Eisenberg et al., 2015). 

Preadolescence (Ages 12-14) 
In preadolescence, children begin to think more abstractly and deal with hypothetical situations 
(Piaget, 1952). As their cognitive skills advance, CT frameworks for this age group often involve 
more complex tasks, such as designing algorithms (step-by-step instructions for solving 
problems) or using programming languages like Python or JavaScript. 

At the same time, preadolescents are exploring their identities and becoming more 
independent, which Erikson (1963) sees as crucial for developing self-confidence. During this 
stage, it is important for CT frameworks to offer opportunities for personal projects that allow 
preadolescents to explore topics they care about. Peer feedback is also very important in this 
stage, as adolescents tend to rely more on their friends and social groups for validation. 
Collaborative, peer-based learning can engage preadolescents more effectively (Doleck et al., 
2017). This is where prosocial behavior—working well with others—is a key part of learning and 
collaboration. 

Adolescence (Ages 15-18) 
Adolescents are capable of advanced abstract thinking, which allows them to engage with 
more sophisticated computational topics, such as data structures, algorithms, and software 
engineering (Piaget, 1952). At this stage, CT frameworks focus on preparing students for 
careers by offering real-world applications like app development or data science projects. 
These projects challenge students to think critically and solve complex problems. 

The emotional and social changes adolescents experience are important to consider in CT 
frameworks. As Erikson (1963) notes, adolescence is a time for exploring one’s identity and 
deepening social relationships. Adolescents care about how they relate to their peers, and their 
ability to manage emotions is crucial for success in group projects. This is where emotional 
regulation becomes important in CT frameworks. Working on larger projects with others helps 
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students develop both technical skills and social-emotional skills like collaboration and conflict 
resolution (Grover & Pea, 2013). 

 

Cultural and Educational Influences on Framework Design 

The culture of a country plays a significant role in how CT frameworks are designed. In 
countries with collectivist cultures (like many East Asian countries), there is a focus on group 
work and cooperation. This fits well with the social-emotional development of children in these 
cultures, who may be more accustomed to working together to achieve shared goals (Doleck et 
al., 2017). On the other hand, in individualistic cultures (like many Western countries), there may 
be more focus on independent problem-solving and self-regulation. 

The availability of technology also affects how CT is taught. In countries with limited access to 
technology, the focus may be more on cognitive skills, such as creative problem-solving, rather 
than on coding and programming. This ensures that all students, regardless of access to 
technology, can still benefit from learning the core ideas of computational thinking. 

Studies from Nordic Countries 
In countries like Finland, Sweden, and Denmark, CT education is integrated into various 
subjects, not just computer science. These countries emphasize creativity, problem-solving, 
and collaboration, which aligns with the developmental stages of students. For example, 
Finland’s curriculum incorporates computational thinking into subjects like math, science, and 
the arts, showing how CT can apply to real-world challenges (Kikas et al., 2020). Additionally, 
Bocconi, Chioccariello, and Earp (2018) highlight the Nordic approach to integrating 
computational thinking and programming into compulsory education, where the focus is on 
fostering creativity and problem-solving skills, as well as ensuring that all students can access 
this type of learning regardless of their socio-economic background. 

Studies from North America 
In North American countries like the United States, CT is seen as essential for preparing 
students for a tech-driven future. Initiatives like Computer Science for All focus on providing 
coding and computational skills to a wide range of students (Grover & Pea, 2013). Similarly, 
Canada and other North American countries are heavily investing in STEM (Science, 
Technology, Engineering, and Mathematics) education to equip students with the cognitive and 
technical skills needed for future careers (Grover & Pea, 2013). 

Studies from Latino Countries 
In Latino countries, there is an increasing recognition of the importance of CT for 
socio-economic development. In Brazil, the government has launched initiatives to teach 
coding and problem-solving to students from elementary to high school, helping them compete 
in a global economy (Bocconi et al., 2018). Similar initiatives are underway in Mexico and 

19 



 
 

Argentina, where schools are focusing on improving digital literacy to enhance both cognitive 
and socio-emotional skills (Bocconi et al., 2018). 

Summary for this section 

The variability in Computational Thinking (CT) frameworks across different countries, 
educational levels, and age groups highlights the need for context-sensitive models that can be 
tailored to the local educational, cultural, and technological environment. While the core 
principles of CT, such as decomposition, abstraction, and algorithmic thinking, remain 
universal, their application and assessment must be adapted to meet the needs of students in 
diverse settings.  

Frameworks in K-12 education are often designed to be flexible and accessible, focusing less 
on formal programming languages and more on the broader cognitive aspects of CT, such as 
problem decomposition and pattern recognition. These frameworks also tend to prioritize 
collaborative problem-solving and hands-on learning, as these approaches have been shown 
to enhance student engagement and facilitate deeper understanding (Grover & Pea, 2013). For 
instance, platforms like Scratch (Resnick et al., 2009) are commonly used in elementary and 
middle schools to introduce coding concepts through interactive and creative projects. 

In contrast, higher education frameworks tend to be more specialized and focused on 
the technical development of specific computational skills. These frameworks are often 
built around formal programming languages, algorithm design, and data structures to 
prepare students for professional careers in computer science and related fields 
(Korkmaz et al., 2017). In university settings, CT frameworks are more structured, offering 
deep dives into technical topics, whereas K-12 frameworks focus more on providing 
students with a broad foundation in computational thinking that can be applied across 
disciplines. 

Future research should explore how these frameworks can be adjusted to ensure that all 
learners, regardless of their background or access to technology, have the opportunity to 
develop the critical thinking and problem-solving skills needed in the 21st century. 
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Deliverable 2: Evaluation of the 
Arukay assessment tool and its 

psychometric properties 
 

Process 

Goal 
The primary goal of this evaluation was to assess the content validity of the Arukay 
Assessment System by gathering external expert feedback. This system was reviewed 
by a team of independent evaluators (i.e., the fellows) to ensure that its items were 
clear, culturally relevant, and effective in assessing key skills. The evaluators provided 
feedback on specific aspects such as clarity, cultural appropriateness, and the ability 
to assess problem-solving skills.  

Profile of the Independent Evaluators 
The evaluation was carried out by three independent experts, each bringing unique 
expertise to the project, ensuring a diverse range of perspectives: 

● Evaluator 1: Patricia Lockwood is a Professor of Decision Neuroscience and 
Wellcome Sir Henry Dale Research Fellow at the University of Birmingham, UK. 
Her research focuses on learning, decision-making and social cognition across 
the lifespan from childhood to old age. She regularly uses computational models 
of behaviour in her research work. Her skills helped her to ensure the 
psychometric properties of the Arukay Baseline Assessments, and in ensuring 
the language and structure was tailored to the abilities of different age groups. 
 

● Evaluator 2: Natalia I. Kucirkova is a research professor affiliated with the 
University of Stavanger, Norway and The Open University and University College 
London, UK. Natalia’s research takes place collaboratively across academia, 
commercial and third sectors. She co-founded and currently directs the 
International Centre for EdTech Impact that connects EdTech academia and 
industry. Natalia is widely published on topics of EdTech evidence in leading 
journals including Nature and NPJ of Learning. Natalia’s expertise supported the 
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Arukay’s Baseline Assessment in terms of its equity and inclusive design 
properties and alignment with the Science of Learning. 
 

● Evaluator 3: Laura Di Giunta is a Professor of Personality Development 
Psychology at Sapienza University of Rome, Italy. Her specialization in children 
and adolescent socio-emotional development, alongside her expertise in 
quantitative psychology and factorial validity, allowed her to evaluate the 
content validity of the Arukay Assessment System. Her skills were helpful in 
ensuring the system aligned with developmental and socio-emotional concepts 
for children and adolescents. 
 

It is important to note that no evaluators were native Spanish speakers, and the Arukay 
system was originally created in Spanish. Therefore, the evaluators reviewed the 
system’s content based on its translated version. While their expertise ensured a focus 
on clarity and cultural relevance, they were not positioned to assess the system’s 
overall effectiveness in its original language.  

Evaluation Focus Areas 
 The evaluators provided feedback on the following key areas: 

● Clarity of Instructions: How easy is it for children in different age groups to 
understand and follow the instructions for each task? 
 

● Cultural and Contextual Relevance: How well do the items reflect the diverse 
cultural backgrounds of children, ensuring fairness and avoiding bias? 
 

● Decomposition: How well do the items help children break down complex 
problems into smaller, manageable parts? 
 

● Abstraction: How well do the items help children focus on relevant details and 
ignore irrelevant ones? 
 

● Patterns: How well do the items encourage children to recognize patterns or 
trends? 
 

● Algorithm: How well do the items help children understand and create 
step-by-step procedures to solve problems? 
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● General Improvements: Any suggestions for improving the wording or clarity of 
the items. 
 

Types of Investigations 
 To achieve a comprehensive evaluation, two distinct types of investigations were 
conducted: 

1. Quantitative Data Analysis from Students 
The fellows analyzed previously collected data from students of different ages 
who had completed the baseline assessment using the Arukay system. This 
data was analyzed quantitatively to provide insights into the system's 
performance in assessing key skills. While the fellows were not directly 
evaluating the validity of the system, their analysis contributed to the ongoing 
process of establishing the system's validity by offering valuable feedback on 
how well the system functioned in real-world conditions.  

2. Fellows’ Rating of the Existing Measure 
The fellows also rated the items based on various attributes, such as clarity, 
cultural relevance, and alignment with the problem-solving skills being 
assessed. This allowed the fellows to provide direct feedback on the system’s 
content from their professional perspectives. The results from the fellows’ 
ratings were then used to further inform the evaluation process, ensuring a 
comprehensive review of the system’s strengths and potential areas for 
improvement. 
 

Evaluator Scoring and Analysis 
Each fellow scored the items on a scale of 1 (not much) to 3 (very much) based on how 
well the items met the evaluation criteria. Items were assessed for three distinct age 
groups: 3rd–5th graders, 6th–8th graders, and 9th–11th graders. The scores were then 
aggregated to provide insights into the content validity of the translated materials.  

The results from both the evaluators' feedback and the quantitative data analysis 
offered a comprehensive understanding of how well the Arukay Assessment System 
aligns with its intended goals. Based on the findings, the fellows proposed 
recommendations for improving the system, helping to guide the next steps in 
validating its effectiveness. 
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Results 

Quantitative feedback based on existing baseline assessment data 

The fellows recorded the items provided by Arukay for the existing baseline 
assessments. Accuracy in responses for each of the items was calculated (0 or 1 
depending on if the answer was correct or incorrect). After reviewing the composition 
of the questionnaire, it was determined that the clearest measure that could be 
psychometrically assessed was ‘difficulty index (also known as the p-value)’ which is a 
measure of how easy or difficult a question is, based on the percentage of students 
who could answer it correctly. This is a quantitative measure that can be calculated 
from existing baseline data provided by Arukay, and is different from the 3 independent 
ratings provided by raters on ‘clarity’ of the wording of the different items.  

We provide the results of this difficulty index analysis below for the 3 baseline 
assessments we had access to, which contained responses for 3 questions each per 
domain of computational thinking (Decomposition, Patterns, Abstraction, Algorithmic 
thinking). We also provide a guideline for the range of values for each item to be 
classified as easy, average or difficult. Items should ideally be revised if they fall into 
the easy or difficult range (Bermundo, C., Bermundo, A. & Ballester, R., 2004; Sahoo, 
D. P., & Singh, R., 2017).  

 

Difficulty index for baseline assessments 

Please find below the results of the difficulty index analysis for each of the 3 age group baseline 
assessments. 
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Quantitative feedback based on Fellow ratings 

Please find below the statistical results from the fellow ratings assessment of the baseline 
measures. Summary statistics are provided as well as graphs depicting the average fellows 
scores for each of the 20 items in each baseline assessment. 

Combined ratings for different constructs assessed by the fellows. 

 

Combined ratings for individual items 

Baseline 3 to 5 
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Baseline 6 to 8 
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Baseline 9 to 11 
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Recommendations to Arukay 

General feedback from the Research Fellows 

● To improve the quiz, consider breaking up multi-part questions into separate sentences 
to enhance clarity. 

● Consistency in phrasing is also important—ensure that questions of the same type are 
worded exactly the same way to avoid confusion, such as standardizing "What figure 
comes next in the sequence?" rather than using variations like "Which figure continues 
in the sequence?" 

● Keep question labels simple by just numbering them (e.g., "Question 1") instead of 
adding unnecessary descriptors like "Question 1: Problem/requirement," as 
straightforward instructions are most effective. 

● To improve clarity and accessibility, avoid sub-questions and lengthy, multi-part 
questions. Instead, break them into simpler, more direct statements using full stops. For 
example, the question: 

"They ask you to make a work of art that contains only warm colors. Apart from that, the 
theme must be about any existing mammal. That is, you must draw a mammal with warm 
colors. You can use whatever art technique you prefer. Taking this requirement into account, 
how would you propose the breakdown of ordered steps to create the work of art?" 

Could be rewritten as: 

"Please draw a mammal using only warm colors. Select from the options below the steps 
you would need to complete the task." 

This ensures the instructions are clear and easy to follow. 

● Consider accessibility—does the use of colours accommodate colour-blind or visually 
impaired students? Universal Design principles suggest that colour should not be the 
sole means of conveying information. To make the quiz more inclusive, consider using 
high-contrast colour schemes that are distinguishable for individuals with colour 
blindness, such as blue and orange instead of red and green. 

● For students with low vision, ensure that text is displayed in a clear, legible font with 
sufficient contrast against the background. Providing the option to enlarge text or 
switch to a high-contrast mode could further enhance accessibility. Moreover, 
screen-reader compatibility should be taken into account by structuring the quiz with 
alternative text for images and ensuring that interactive elements, such as 
drag-and-drop tasks, are navigable via keyboard controls. 
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● If possible, consider offering an auditory component where questions and answer 
choices can be read aloud. This would benefit not only visually impaired students but 
also those with reading difficulties or learning disabilities such as dyslexia. Ensuring 
accessibility from the outset will make the quiz more inclusive, allowing all students, 
regardless of their abilities, to engage with and benefit from the learning experience. 

● True/false questions should always be formatted as clear questions with question 
marks. These question types may also encourage guessing rather than demonstrating 
knowledge, so consider using multiple-choice questions with three to four response 
options instead. Maintaining a consistent question format throughout the quiz will help 
students focus on the content rather than navigating different question structures. 

● Overall, the images predominantly feature male figures, leading to an imbalance in the 
representation of female figures. To improve this measure, it would be beneficial to 
achieve a more balanced depiction of both genders in the visuals. Additionally, please 
refer to the notes in column C regarding certain items that may be relevant in some 
cultures (e.g., where a Christmas tree is recognized and holds significance), or during 
specific times (e.g., the Covid-19 pandemic), but not in others. 

 Specific feedback on Base 3-5 questions: 

For Question 10, the answer is unclear—the instructions state that the number of lines must 
equal the number of spheres, yet this is not accurately reflected in the given diagram. It would 
be helpful to clarify this to avoid misunderstandings. 

In Item #15, removing the 'Ñ' character might be beneficial, as it could introduce cultural 
specificity that is not relevant to the task's abstract nature. Lastly, the instructions for Item #16 
are somewhat difficult to follow. To improve clarity, consider including an image demonstrating 
the completed task, similar to the original Tower of Hanoi, to provide students with a clear 
visual reference. These refinements will help ensure the quiz is more accessible, fair, and easy 
to understand for all students. 

Specific feedback on Base 6-8 questions: 

For items 1-7, the answers are all just pick the option that has the most steps, so they may not 
evaluate actual understanding too well. 

Some of the items for patterns could be developed more from other assessment measures of 
patterns in this age group, as the items can be quite similar to the other categories and directly 
use the word 'patterns' rather than getting at pattern knowledge implicitly. 

The way the questions map on to the four domains of CT is a bit clearer in baseline 3_5, could 
slightly more complex less text-based question be incorporated for this age group too? 

Specific feedback for Base 9-11 questions: 
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Some of the items would be influenced quite strongly by cultural background, with examples 
talking about specific grades of 4.5 and 5, which are not universally applied across cultures. 

After checking the Spanish and English versions, there might be a typo in item #15 (i.e., both 
items ask "what are the key points of these problems?"). Could this be an error from copying 
and pasting, or is it intentional? 
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Deliverable 3: Recommendations for 
Arukay to validate the revised the 

baseline assessment tool 
Next steps for Arukay to validate the baseline assessment 
Fellows recommend including a self-report measure of computational thinking for all age 
groups in the revised baseline assessment measure. This self-report measure will help evaluate 
students' perceptions of their own computational thinking abilities, and how these correlate 
with performance on the baseline assessment. The self-report scale can also be used before 
and after taking part in the Arukay programme to assess baseline computational thinking skills 
and how they change. 

We recommend including The Computational Thinking Scale, shown below, which measures 
self-reported computational thinking skills in 5 domains (Tsai et al., 2020).  
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Once the measure is revised according to the recommendations, fellows then recommend 
testing the revised measure in a new sample of students in the different age groups. We 
summarise the three stages of baseline assessment development to guide Arukay with how to 
implement these revisions and evaluate their effect on measurement validity. 
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Recommendations for Validating the Arukay Assessment Tool 

Following the revision of the Arukay assessment tool, the next phase should be to rigorously 
validate the measure to ensure it reliably assesses the intended skills across age groups. This 
process involves gathering different types of validity evidence and conducting pilot testing. The 
steps outlined below are aligned with best practices in educational and psychological 
measurement (AERA, APA, & NCME, 2014) and should be implemented by a team with 
expertise in quantitative research methods and psychometrics. 

 

Evidence of measurement validity 

Construct Validity: To help assess whether the Arukay assessment measures the intended 
underlying competencies (e.g., algorithmic thinking), it is helpful to examine construct validity. 
This form of validity refers to the degree to which test scores reflect the theoretical construct(s) 
they are intended to measure (Brown, 2015). 

A common method for assessing construct validity is factor analysis. Arukay's tool, which 
comprises 20 binary (correct/incorrect) items across four assumed factors per age group, could 
be assessed with two types of factor analysis: 

● Exploratory Factor Analysis (EFA) is suitable when the underlying structure is uncertain. 
● Confirmatory Factor Analysis (CFA) should be used when testing a predefined model, 

such as Arukay's 4-factor framework. 

Since the items have a dichotomous (i.e., binary) outcome (students can either be correct or 
incorrect), standard factor analysis (which assumes continuous data) is inappropriate. Instead, 
you could use tetrachoric correlation matrices as input, which estimate the relationships 
between latent continuous traits underlying the binary responses (Brown, 2015; Holgado-Tello 
et al., 2010; Kilic, Uysal, & Atar, 2020). To have enough variables to estimate the factor 
structure accurately, collecting at least five items in each factor (e.g. decomposition) rather than 
the three currently used items is recommended.  

If Arukay also integrates the suggested 20-item self-report measure (The computational 
thinking scale, Tsai et al., 2020), then factor analysis of this self-report scale could also be 
performed, and the individual items in Arukay’s baseline assessment would be correlated with 
it. These analyses can be performed in many different statistical software packages, including 
R (free), JASP (free), or Mplus (paid). 

Criterion Validity: To establish criterion-related validity, it is suggested to correlate the Arukay 
test scores with those from another validated assessment of similar constructs (e.g., digital 
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literacy, logic, or computational thinking tests). A moderate to high correlation indicates the tool 
measures what it claims to measure (Crocker & Algina, 2006). 

Content Validity: This can be used to check that test items reflect the target competencies. 
This should involve expert reviews by subject matter specialists (e.g., educators, curriculum 
designers), who evaluate whether each item aligns with the learning outcomes and skills 
Arukay aims to assess (Haynes, Richard, & Kubany, 1995). 

Predictive Validity: Assess how well test scores forecast future performance in academic or 
applied contexts—such as performance in coding competitions or standardized STEM exams. 
A method to do this relies on regression analysis (Anastasi & Urbina, 1997; Wong, 2020). 

Item analysis: The difficulty index measures how easy or difficult a question is. A higher 
difficulty index means the question was easier, while a lower index indicates a more difficult 
question. This measure can be easily calculated by dividing the number of students who 
answered a question correctly by the total number of students who took the test. The result is 
expressed as a percentage. Guideline cut-offs can be viewed in this report's ‘Results’ section. 

Reliability: Cronbach’s alpha or the Kuder-Richardson Formula 20 (KR-20) could be used to 
assess the reliability of the individual items that evaluate each construct (e.g. decomposition). 
An alpha of 0.7 or higher is generally considered acceptable, reflecting good internal 
consistency. 

 

Pilot Testing - once the tool is revised, according to our recommendations 

Representative Administration: The revised tool should be pilot-tested with a sample 
reflecting the diversity of the target population across the three age groups. Ensuring 
demographic and skill-level variability will help assess whether the tool functions equally well 
across developmental stages. 

Minimum Sample Size: Arukay’s assessment assumes a model of 4 factors measured by 20 
binary items, analyzed separately by age group. Based on guidelines for factor analysis with 
categorical data (MacCallum et al., 1999; Wolf et al., 2013), a minimum of 150–200 participants 
per age group is recommended. Power analysis for CFA with binary items can be conducted 
using software like Mplus or R (Kim, Winkler, & Talley, 2021). 

Test-Retest Reliability: To evaluate the stability of the assessment over time, it is useful to 
check the revised tools test-retest reliability study. For this, it is recommended that the test be 
re-administered to the same group of students after 1–2 months and the correlation between the 
two sets of scores be computed. A high correlation (e.g., r ≥ .70) suggests the tool yields 
consistent results across time points (Nunnally & Bernstein, 1994). 
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Anticipating Challenges and Iterative Adjustments 

During the validation process, it could be important to anticipate and respond to challenges 
that may arise. For example, initial pilot data may reveal that certain items do not load clearly 
onto the expected factors or display limited variability (e.g., items that are too easy or too 
difficult), prompting item revision or replacement. Similarly, reliability indices for some 
constructs may fall below acceptable thresholds, requiring refinement of item wording or the 
addition of more items per factor. Differences in how the assessment performs across age 
groups could also indicate the need for age-specific adaptations or alternative forms. 
Moreover, recruitment for pilot testing may yield uneven sample sizes across groups, which 
may necessitate extending data collection or applying statistical techniques for handling 
unequal group sizes. Throughout the process, Arukay should adopt an iterative 
approach—analyzing results, revising the tool, and retesting where necessary—to ensure the 
final assessment is both psychometrically sound and developmentally appropriate across 
contexts. 

 

Final Note 

These steps will support Arukay in developing a scientifically rigorous, valid, and reliable 
assessment tool. We recommend partnering with experienced psychometricians or academic 
institutions to guide the validation process and ensure appropriate statistical modeling, 
especially given the binary nature of the items and the assumption of a four-factor structure. 
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The following table summarizes the proposed steps for validating the Arukay assessment tool, 
outlining key actions, purposes, and the types of expertise needed for implementation. The 
timeline for each step varies and will depend on Arukay’s overall research stage and available 
expertise. 

Step Action Details Suggested 
Expertise 

Construct 
Validity 

Perform EFA or CFA 
using tetrachoric 
correlations 

Confirms the assessment 
reflects the intended 4-factor 
structure; appropriate for binary 
items 

Psychometrician 
or Quantitative 
Researcher 

Criterion 
Validity 

Correlate scores with 
external measure 

Demonstrates alignment with 
another validated assessment 
of similar constructs 

Psychometrician 
or Social 
Science 
Researcher 

Content 
Validity 

Expert review of items 
against curriculum 
goals 

Ensures items comprehensively 
reflect target competencies; 
may involve panels or 
structured rubrics 

Curriculum 
Specialist or 
Educator 

Predictive 
Validity 

Link current scores 
with future 
performance 

Use regression or classification 
models to assess how scores 
forecast academic outcomes 

Data Analyst or 
Educational 
Researcher 

Item 
analysis 

Check that the overall 
accuracy of each item 
is in a good range to 
pick up differences 

Calculate the percentage 
correct for each item in the 
measure 

Data analyst 
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Reliability Check that the items 
within each factor are 
reliable measures of 
the factor 

Use Cronbach’s alpha or binary 
measure alternatives 

Data analyst 

Pilot 
Testing 

Administer revised 
assessment to 
150–200 students per 
age group 

Ensures robust data for 
analysis; sample should reflect 
diversity across age groups 

Data Analyst or 
Field Coordinator 

Test-Retest 
Reliability 

Re-administer test 
after ~2 months 

Evaluates score stability over 
time by correlating initial and 
follow-up results 

Psychometrician 
or Data Analyst 
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Deliverable 4: Linking Arukay’s 
Mission with Global Partners 
Arukay’s work links up with the bigger picture in education through understanding school 
needs and preparation for various competitions of significance. Our goal is to help Arukay think 
through how it should pitch its value to students, parents and teachers and how it can link up 
with larger global partners for funding and support. 

We started with Raspberry Pi Foundation given its prominence in the spaces of computational 
thinking and education. Raspberry Pi Foundation has developed a formal framework for 
computational thinking skills. The official document can be reviewed here as a reference:  

The thinking behind the framework seems to be that it should be detailed enough to allow 
educators to build the key ideas into learning activities and resources and even use them to 
assess students. 

These perspectives on computational thinking include experiences in the classroom and hence 
provide a different sort of perspective. 

They define CT as a set of ideas and thinking skills that people can apply to design solutions or 
systems that a computer or computational agent can enact.  

Underpinning all aspects of computational thinking is the logical analysis of problems and 
solutions. In that sense this is consistent with our earlier definitions which span both the uses 
of computers in problem-solving and general problem-solving techniques applicable to a wider 
range of scenarios. 

They think of CT in terms of 6 distinct components: 

● Decomposition in terms of identifying when a problem needs to be broken down, when 
instructions need to be broken down and when a problem can be broken down into 
simpler versions of itself. This includes an appreciation for how information flows 
between components, sensors and output devices. In that sense their interpretation of 
decomposition is less abstract than what we shared earlier in the report. 

● Algorithm design in terms of sequencing instructions, grouping instructions, picking 
between instructions, the use of arithmetic and logical operators for instructions, 
naming collections of instructions and thinking of data in terms of variables and 
assignments. This includes identifying a range of test data and controlling the flow of 
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data through an algorithm. Again this definition stresses the importance of input and 
output and data flow and provides a different template upon which you could build 
assessment questions.  

● Patterns and generalisation in terms of recognizing where multiple solutions are 
possible, predicting outcomes drawing on prior knowledge and transferring ideas from 
one problem to another. This idea of knowledge transfer which is widely discussed in 
literature about pedagogy and education is thus important to their definition of 
computational thinking. 

● Abstraction in terms of reducing complexity, representing artefacts, identifying 
relationships and filtering information and modeling the behaviour of systems. The ideas 
of modeling, systems and artefacts are thus central to how they think about abstraction.  

● Evaluation in terms of defining problems, design plans for testing and stepping through 
algorithms step by step and rigorous arguments to justify an algorithm. This includes 
social and ethical norms. These are also new ideas in computational thinking in that it 
makes students think in terms of testing plans and implementation which maps on to 
real world work. The social and ethical norms provide an important perspective in 
thinking about where data comes from and how the results are interpreted. 

● Data in terms of solution fit, effectiveness, efficiency and modeling. The idea of 
efficiency in using data and thinking about computational efficiency and physical 
considerations are thus important to their interpretation of computational thinking. 

Participation in Robotics competitions 

As discussed on calls, Arukay is interested in understanding how global robotics 
competitions link up with education around computational thinking as these 
competitions are of significance among students across Latin America. 

Here are some of the key ideas extracted from this paper, based on mixed methods 
research among coaches of the World Robotics Olympiad 2019:  

● The significance of robotics in STEM comes from how they convey complex 
mathematical and scientific thinking. It is also established that they bring to students 
innovative spirit and practical ability as well as computational thinking and 
problem-solving. 

● The significance of robotics education is even among rural elementary students as 
demonstrated by the Children’s Robot Theater. This is based on data from this paper 
that involves studying this phenomenon in rural China across two years and reports 
consistent findings. 

● There is a range of global robotics competitions even beyond the World Robotics 
Olympiad that can be explored:  

○ Botball 
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○ FIRST organization 
○ RoboCup Junior 

● The focus in such competitions tends to be on teaching robot design, assembly, 
coding, operations and modifications.  

● Particularly in China, there is an emphasis on training agencies that specialize in 
teaching students how to build the robots quickly 

● Coaches' feedback suggests a general consensus on how students who take part in 
such competitions improve programming skills and develop knowledge and skills 
around teamwork, career planning, interacting with foreigners and bringing honors to 
their country. The main areas of improvement are consistent concentration and team 
cohesion throughout the project. 

Based on this, we reviewed another paper reviewing how computational thinking is integrated 
into secondary education. 

● The focus in this paper is integrating computational thinking through project based 
learning into a secondary school in Barcelona, Spain 

● The purpose of such programs is to lay the foundations for future programmers 
● These programs also need to be seen as a means to develop a person for society  
● Data collected has found that participating in such programs improve their performance 

and motivation  
● The involvement in such programs improves computational thinking across concepts, 

practices and perspectives 

We feel that these points should be communicated by Arukay to stakeholders who are thinking 
how computational thinking benefits them.  

Given the significance of Raspberry Pi Foundation to global growth in computational thinking, 
we identified a series of possible collaborations that you could reach out to them for: 

● They support Code Clubs around the world with resources and training and many of 
these activities are ancillary to what Arukay might want to take up  

● They look for research partners particularly in areas like: developing frameworks for 
teaching AI/ML/data science to young people, role of language in the programming 
classroom and the support from AI tools, computer pedagogy in formal and informal 
settings, the impact of different approaches to curriculum and policy and the value of 
physical interfaces in teaching computing 

● There is particular focus on the recent Experience AI initiative to provide free resources 
to teachers on AI literacy and distribute these through partners  

● One of the concerns raised on a previous call was the expense around Raspberry Pi 
products. We’d like to emphasize that it is possible to collaborate with them on 
education and computational thinking without specifically deploying their hardware. 
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Even if you are interested in using their hardware, there seem possibilities around 
fundraising either directly through them or via third parties that can make this happen.   

 

Bebras Computational Thinking Challenge 

Bebras is an international initiative designed to promote Informatics (Computer Science) and 
computational thinking among students of all ages. The Bebras challenge, typically integrated 
into classroom activities by teachers, encourages students to develop problem-solving skills 
through engaging tasks that can be completed on computers or mobile devices. 
Computational thinking, a key focus of the challenge, involves breaking down complex 
problems, designing algorithms, recognizing patterns, and applying abstraction—skills 
essential for software development and logical reasoning. The main Bebras challenge takes 
place during the second week of November, recognized as World-Wide Bebras Week, though 
many countries extend it to two weeks or run related activities year-round. These include award 
ceremonies, second-round challenges, summer camps, teacher workshops, and research 
initiatives, further strengthening computational thinking education worldwide. 

● Bebras includes five computational thinking skills:  

Table adapted from Bebras, Computational Thinking Cheat Sheet (2022), https://www.bebras.org/ 

CT Skill How to spot use of the skill 

Abstraction 

Focusing on the important information 
only, ignoring irrelevant detail 

Hiding unnecessary details; 
Spotting key elements in 
problem; 

Choosing a representation of a system 

Algorithmic Thinking 

Developing a step-by-step solution to 
the problem, or the rules to follow to 
solve the problem 

Thinking in terms of sequences and rules; 
Executing an algorithm; 

Creating an algorithm 

Decomposition 

Breaking down a complex problem or 
system into smaller, more manageable 
parts 

Breaking down tasks; 

Thinking about problems in terms of component parts; 

Making decisions about dividing into sub-tasks with 
integration in mind, e.g. deduction 
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Evaluation 

Ensuring that your solution is a good 
one. 

Finding best solution; 

Making decisions about whether good use of 
resources; Fit for purpose 

Pattern Recognition 

Looking for similarities among and 
within problems 

Identifying patterns as well as similarities and 
connections, and identifying when patterns are not 
fully established; Extrapolating or interpolating data; 

Putting repeated instructions into a loop or function; 

 

Summary 
This report presents a summary of four key deliverables developed as part of the LEAP 
project—a collaborative initiative between four LEAP Fellows and the Arukay organization. 

The first deliverable focused on validating Arukay’s existing measurement framework. This 
included a review of current frameworks and baseline quizzes, a literature review guided by 
Arukay’s core questions and a rapid review to align findings with the framework. It concluded 
with tailored recommendations to enhance Arukay’s current tool. 

The second deliverable built on this foundation by reviewing methodologies for data 
collection and analysis, assessing rater alignment, and conducting an analysis of the 
psychometric properties of the Arukay measurement tool. 

The third deliverable expanded these recommendations by suggesting concrete ways to 
strengthen and test a revised tool—both with existing resources and through future internal or 
external research—with particular attention to measurement validity and statistical analyses. 

The fourth deliverable provided a strategic perspective on Arukay’s broader impact and future 
directions. It highlighted opportunities to position Arukay more effectively within the global 
conversation on computational thinking, and to attract interest and funding from major 
foundations and international organisations operating in the same space of computational 
thinking and young learners. 

The key aspects of this project’s contribution are visually summarised in Figure 4, followed by a 
list of key take-aways. 
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Figure 4: Visual summary of the key project’s contributions 

What is computational thinking and what are CT’s key frameworks? 

● Computational thinking consists of four key techniques (decomposition, pattern 
recognition, abstraction, and algorithms), which work together to structure and solve 
problems efficiently. 

● Computational thinking extends beyond programming, serving as a cross-disciplinary 
problem-solving approach applicable in fields like mathematics, science, and the arts. 
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● Key frameworks include Papert’s exploratory learning approach (1980), Wing’s 
conceptualization of CT as a universal skill (2006), Brennan & Resnick’s 
three-dimensional framework (2012), Tikva & Tambouris’s five-area model (2021), and 
Zapata-Cáceres’s computational thinking assessment (2020). 

● Ongoing research aims to integrate socio-emotional aspects with computational skills 
to develop a more comprehensive framework that enhances both cognitive and 
collaborative learning. 

Is any framework of CT more evidence-based than any other framework? 

● Systematic reviews have probed how we can teach teachers to use CT in their 
classrooms. The current consensus is that future research should investigate what 
constitutes “good CT instruction” and how it can be effectively measured with robust 
assessment tools. 

● There is some emerging evidence that teaching elements of CT improves 
problem-solving, critical thinking, social skills, self-regulation, and other academic skills 
such as reading and spelling. There is limited evidence for the evidence base of 
adopting one framework over others. 

● There are several assessments of CT that have been developed and evidence that some 
measures show reasonable reliability. Assessments should include multiple choice 
correct/incorrect answers as well as self-reported evaluations of the level of CT that 
students adopt (such as the Computational Thinking Scale, Tsai et al, 2020). 

● Ocampo et al (2024) provide the latest systematic review of instruments to assess CT. 

Variability in Computational Thinking (CT) Frameworks 

● CT frameworks are shaped by cultural values, educational goals, and technological 
access, influencing how CT is taught, with some cultures emphasizing group 
collaboration and cooperation, while others may prioritize individual problem-solving. 

● Frameworks are tailored to students' cognitive and socio-emotional development, from 
hands-on tools for younger children to complex problem-solving for older students. 

● The scope of CT frameworks varies across disciplines and educational contexts, with a 
focus on foundational skills in K-12 and technical specialization in higher education. 

● CT frameworks emphasize collaboration, creativity, and problem-solving, with tools like 
Scratch used in elementary and middle schools for interactive learning. 

  Linking Arukay’s Mission with Global Partners 

● For growth and sustainability, Arukay should look to the significance of computational 
thinking to global foundations as well as applications to practical competitions such as 
robotics ones. 

45 



 
 

● Bebras and Raspberry Pi Foundation have their own practical frameworks with some 
relevance to how Arukay frames its content. Arukay can review these as a way of 
associating with such brands. There is also the potential to partner with Raspberry Pi 
Foundation through various models proposed 

● There is some synergy with the skills needed to succeed in global robotics competitions 
and Arukay can stress this relationship in building its profile and partnerships 
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